Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 21(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353157

ABSTRACT

Acrylamide is one of the harmful substances present in food. The present study aimed to establish the effect of acrylamide supplementation in tolerable daily intake (TDI) dose (0.5 µg/kg b.w./day) and a dose ten times higher than TDI (5 µg/kg b.w./day) on the population of vasoactive intestinal peptide-like immunoreactive (VIP-LI) neurons in the porcine small intestine and the degree of the co-localization of VIP with other neuroactive substances (neuronal nitric oxide synthase (nNOS), substance P (SP), and cocaine- and amphetamine-regulated transcript peptide (CART)). In our work, 15 Danish landrace gilts (5 in each experimental group) received capsules (empty or with low or high doses of acrylamide) for a period of 28 days with their morning feeding. Using double immunofluorescence staining, we established that acrylamide supplementation increased the number of neurons showing immunoreactivity towards VIP in all types of enteric nervous system (ENS) plexuses and fragments of the small intestine studied. Moreover, both doses of acrylamide led to changes in the degree of co-localization of VIP with nNOS, SP, and CART in intramural neurons. The observed changes may be the adaptation of neurons to local inflammation, oxidative stress, or the direct toxic effects of acrylamide on intestinal neurons, also referred to as neuronal plasticity.


Subject(s)
Acrylamide/pharmacology , Enteric Nervous System/cytology , Intestine, Small/cytology , Neurons/cytology , Vasoactive Intestinal Peptide/immunology , Animals , Dietary Supplements , Enteric Nervous System/drug effects , Enteric Nervous System/immunology , Enteric Nervous System/metabolism , Intestine, Small/drug effects , Intestine, Small/immunology , Intestine, Small/metabolism , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/immunology , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Substance P/metabolism , Swine
2.
Int J Mol Sci ; 20(13)2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31288386

ABSTRACT

In recent years, a significant increase in the consumption of products containing large amounts of acrylamide (e.g., chips, fries, coffee), especially among young people has been noted. The present study was created to establish the impact of acrylamide supplementation, in tolerable daily intake (TDI) dose and a dose ten times higher than TDI, on the population of galanin-like immunoreactive (GAL-LI) stomach neurons in pigs. Additionally, in the present study, the possible functional co-operation of GAL with other neuroactive substances and their role in acrylamide intoxication was investigated. Using double-labelling immunohistochemistry, alterations in the expression of GAL were examined in the porcine stomach enteric neurons after low and high doses of acrylamide supplementation. Generally, upregulation in GAL-LI immunoreactivity in both myenteric and submucous plexuses was noted in all stomach fragments studied. Additionally, the proportion of GAL-expressing cell bodies simultaneously immunoreactive to vasoactive intestinal peptide (VIP), neuronal nitric oxide synthase (nNOS) and cocaine- and amphetamine- regulated transcript peptide (CART) also increased. The results suggest neurotrophic or/and neuroprotective properties of GAL and possible co-operation of GAL with VIP, nNOS, CART in the recovery processes in the stomach enteric nervous system (ENS) neurons following acrylamide intoxication.


Subject(s)
Acrylamide/adverse effects , Dietary Supplements , Enteric Nervous System/physiology , Galanin/metabolism , Stomach/innervation , Stomach/physiology , Animals , Biomarkers , Fluorescent Antibody Technique , Myenteric Plexus/metabolism , Protein Transport , Swine
3.
PLoS One ; 10(11): e0143661, 2015.
Article in English | MEDLINE | ID: mdl-26606050

ABSTRACT

This experiment was designed to establish the localization and neurochemical phenotyping of sympathetic neurons supplying prepyloric area of the porcine stomach in a physiological state and during acetylsalicylic acid (ASA) induced gastritis. In order to localize the sympathetic perikarya the stomachs of both control and acetylsalicylic acid treated (ASA group) animals were injected with neuronal retrograde tracer Fast Blue (FB). Seven days post FB injection, animals were divided into a control and ASA supplementation group. The ASA group was given 100 mg/kg of b.w. ASA orally for 21 days. On the 28th day all pigs were euthanized with gradual overdose of anesthetic. Then fourteen-micrometer-thick cryostat sections were processed for routine double-labeling immunofluorescence, using primary antisera directed towards tyrosine hydroxylase (TH), dopamine ß-hydroxylase (DßH), neuropeptide Y (NPY), galanin (GAL), neuronal nitric oxide synthase (nNOS), leu 5-enkephalin (LENK), cocaine- and amphetamine- regulated transcript peptide (CART), calcitonin gene-related peptide (CGRP), substance P (SP) and vasoactive intestinal peptide (VIP). The data obtained in this study indicate that postganglionic sympathetic nerve fibers supplying prepyloric area of the porcine stomach originate from the coeliac-cranial mesenteric ganglion complex (CCMG). In control animals, the FB-labelled neurons expressed TH (94.85 ± 1.01%), DßH (97.10 ± 0.97%), NPY (46.88 ± 2.53%) and GAL (8.40 ± 0.53%). In ASA group, TH- and DßH- positive nerve cells were reduced (85.78 ± 2.65% and 88.82 ± 1.63% respectively). Moreover, ASA- induced gastritis resulted in increased expression of NPY (76.59 ± 3.02%) and GAL (26.45 ± 2.75%) as well as the novo-synthesis of nNOS (6.13 ± 1.11%) and LENK (4.77 ± 0.42%) in traced CCMG neurons. Additionally, a network of CART-, CGRP-, SP-, VIP-, LENK-, nNOS- immunoreactive (IR) nerve fibers encircling the FB-positive perikarya were observed in both intact and ASA-treated animals. The results of this study indicate involvement of these neuropeptides in the development or presumably counteraction of gastric inflammation.


Subject(s)
Aspirin/adverse effects , Dietary Supplements/adverse effects , Ganglia, Sympathetic/metabolism , Gastritis/etiology , Gastritis/metabolism , Neurochemistry , Neurons/metabolism , Animals , Disease Models, Animal , Female , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Immunohistochemistry , Nerve Fibers/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL