Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Food Chem ; 446: 138851, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38428080

ABSTRACT

The quality of white tea (WT) is impacted by selected tea cultivars. To explore the organoleptic quality of a recently-discovered WT ("Caicha", CC), HS-SPME/GC-MS and UPLC were employed to identify volatile and non-volatile compounds in tea samples. Multiple statistical methods demonstrated the distinctions between CC and four mainstream WT varieties from main producing areas. CC exhibited abundant volatile alcohol, terpenoids, ketone, aldehyde and ester, as well as non-volatile lignans and coumarins, phenolic acids and low-molecular carbohydrates. These substances combinedly contributed to the flavor attributes of CC, characterized by an intense herbal/citrus-like cleanness and flower/fruit-like sweetness, scarce in existing commercial WT varieties. Sensory evaluation corroborated these findings. In conclusion, we have processed a new tea variety (CC) with WT manufacturing technology, and discovered the unique cleanness and sweetness of it. This study enriches the raw material database for WT production and blending, and boosts the development of more premium WT varieties.


Subject(s)
Camellia sinensis , Lignans , Volatile Organic Compounds , Tea/chemistry , Camellia sinensis/chemistry , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods
2.
Compr Rev Food Sci Food Saf ; 22(6): 5063-5085, 2023 11.
Article in English | MEDLINE | ID: mdl-37850384

ABSTRACT

Liubao tea (LBT) is a unique microbial-fermented tea that boasts a long consumption history spanning 1500 years. Through a specific post-fermentation process, LBT crafted from local tea cultivars in Liubao town Guangxi acquires four distinct traits, namely, vibrant redness, thickness, aging aroma, and purity. The intricate transformations that occur during post-fermentation involve oxidation, degradation, methylation, glycosylation, and so forth, laying the substance foundation for the distinctive sensory traits. Additionally, LBT contains multitudinous bioactive compounds, such as ellagic acid, catechins, polysaccharides, and theabrownins, which contributes to the diverse modulation abilities on oxidative stress, metabolic syndromes, organic damage, and microbiota flora. However, research on LBT is currently scattered, and there is an urgent need for a systematical recapitulation of the manufacturing process, the dominant microorganisms during fermentation, the dynamic chemical alterations, the sensory traits, and the underlying health benefits. In this review, current research progresses on the peculiar tea varieties, the traditional and modern process technologies, the substance basis of sensory traits, and the latent bioactivities of LBT were comprehensively summarized. Furthermore, the present challenges and deficiencies that hinder the development of LBT, and the possible orientations and future perspectives were thoroughly discussed. By far, the productivity and quality of LBT remain restricted due to the reliance on labor and experience, as well as the incomplete understanding of the intricate interactions and underlying mechanisms involved in processing, organoleptic quality, and bioactivities. Consequently, further research is urgently warranted to address these gaps.


Subject(s)
Camellia sinensis , Catechin , Tea/chemistry , Camellia sinensis/chemistry , China , Catechin/chemistry , Catechin/metabolism , Oxidative Stress
3.
Food Funct ; 14(22): 10069-10082, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37867423

ABSTRACT

The oral microbiota, the second largest microbiome in the human body, plays an integral role in maintaining both the local oral and systemic health of the host. Oral microecological imbalances have been identified as a potential risk factor for numerous oral and systemic diseases. As a representative component of tea, epigallocatechin gallate (EGCG) has demonstrated inhibitory effects on most pathogens in single-microbial models. In this study, the regulatory effect of EGCG on more complex oral microbial systems was further explored through a mouse model of acetic acid-induced oral inflammation. Acetic acid induces histological damage in the cheek pouch, tongue, and throat, such as broken mucosa, submucosal edema, and muscular disorders. These detrimental effects were ameliorated significantly following EGCG treatment. Additionally, EGCG reduced the levels of the inflammatory cytokines interleukin-6 and tumor necrosis factor-α to alleviate the inflammation of the tongue, cheek pouch, and throat. According to the 16S rDNA gene sequencing data, EGCG treatment contributed to increased diversity of the oral microbiota and the reversal of oral microecological disorder. This study demonstrates the regulatory effect of EGCG on dysregulated oral microbiota, providing a potential option for the prevention and treatment of oral-microbiota-associated diseases.


Subject(s)
Catechin , Microbiota , Humans , Mice , Animals , Acetic Acid , Inflammation/drug therapy , Cytokines , Catechin/pharmacology , Tea
4.
J Food Sci ; 88(12): 5291-5308, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37889079

ABSTRACT

Oral cavity contains the second largest microbial community in the human body. Due to the highly vascularized feature of mouth, oral microbes could directly access the bloodstream and affect the host healthy systemically. The imbalance of oral microbiota is closely related to various oral and systemic diseases. Green tea extracts (GTE) mainly contain tea polyphenols, alkaloids, amino acid, flavones, and so on, which equipped with excellent anti-inflammatory activities. Previous studies have demonstrated the beneficial effects of GTE on oral health. However, most researches used in vitro models or focused on limited microorganisms. In this study, the regulatory effect of GTE on oral microbiome and the alleviative effect on oral inflammation in vivo were evaluated. The results showed that GTE could efficiently alleviate the inflammations of the tongue, cheek pouch, as well as throat. GTE effectively inhibited the activation of NF-κB through the upregulation of the anti-inflammatory cytokine interleukin (IL)-10, consequently leading to reduced expression of pro-inflammatory cytokines IL-6 and tumor necrosis factor-α. The indexes of spleen and thymus were also elevated by GTE in stomatitis mice. Moreover, GTE promoted the growth of probiotics Lactobacillus and Bacillus, inhibited the reproduction of pathogens Achromobacter, reversing the microbiota disorders in oral cavity. This study not only presents a novel approach for enhancing oral microecology but also facilitates the wider adoption of tea consumption.


Subject(s)
Acetic Acid , Tea , Mice , Humans , Animals , Tea/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Cytokines
5.
Food Chem ; 429: 136838, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37494755

ABSTRACT

Aged white tea (WT) has promising medicinal potential, but how to accurately identify aged white tea is still a difficult problem. Inspired by tea cream, the relationship between the characteristics of nanoparticles in tea infusion and aging time was studied. The results showed that with the increase of aging time, the particle size of white tea nanoparticles (WTNs) decreased gradually. Microscopic images showed that the surface structure of WTNs was changed in three aspects: the waxy layer, the cuticle layer and the palisade tissue. Additional in vitro modeling demonstrated a strong correlation between nanoparticle size and protein and tea polyphenol content. The correlation between nanoparticle sizes and aging time was further verified in aged Pu'er raw tea. Starting with the tea infusion's nanoparticles, this study showed that the aging time of WT would impact the nanoparticles' properties, offering a unique way to determine the aging period of WT.


Subject(s)
Nanoparticles , Tea , Tea/chemistry , Food , Polyphenols/analysis
6.
Food Funct ; 14(2): 1037-1047, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36562296

ABSTRACT

Platelet hyperactivation could lead to various cardiovascular and cerebrovascular diseases, while epidemiological analyses have found that long-term tea drinking could prevent and restrain cardiovascular diseases. Existing studies have shown that catechins, especially epigallocatechin gallate (EGCG), are the main functional factors of tea in alleviating thrombosis, which could inhibit arterial thrombosis and platelet aggregation induced by a variety of agonists. However, their structure-activity relationship and the underlying mechanisms are still unclear. Based on the above background, this study took six typical catechins as research objects, constructed platelet activation models with different inducers, and explored the inhibitory effects and potential mechanisms of catechins with different structures on platelet aggregation through flow cytometry, immunoblotting, cell spreading, and other experiments. It was found that ester catechins could inhibit platelet aggregation induced by adenosine diphosphate (ADP), while epigallocatechin (EGC) with three hydroxyls on the B ring in non-ester catechins was also able to effectively inhibit platelet aggregation. Our data suggested that gallic acyl on the C ring and three hydroxyls on the B ring were the main functional groups affecting the antithrombotic effect of catechins, and the effect of gallic acyl on platelets was significantly stronger than that of the hydroxyl.


Subject(s)
Catechin , Thrombosis , Humans , Catechin/pharmacology , Platelet Aggregation , Tea/chemistry , Adenosine Diphosphate/pharmacology
7.
Molecules ; 27(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080442

ABSTRACT

The chemical substances responsible for the kokumi taste of green tea infusion are still unclear. Here, we isolated the kokumi compound-containing fractions from green tea infusion through ultrafiltration, and the major kokumi compounds were characterized as γ-Glu-Gln and γ-Glu-Cys-Gly (GSH) through ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS). The results indicated that peptides and amino acids were essential compounds in the kokumi-enriched fractions for conducting the sense of kokumi. L-theanine had an enhancing effect on the kokumi taste of green tea infusion, which was confirmed in the sensory reconstitution study. Thus, peptides, especially γ-Glu-Gln and GSH, are the major kokumi compounds in green tea infusion, which has the potential of improving the flavor of tea beverages.


Subject(s)
Camellia sinensis , Camellia sinensis/chemistry , Chromatography, High Pressure Liquid , Peptides/analysis , Taste , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL