Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Front Biosci (Landmark Ed) ; 27(3): 87, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35345319

ABSTRACT

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is an inflammatory disease caused by increasing breathing passage obstruction which completely disrupts human homeostasis. Some patients require lung transplantation or long-term oxygen therapy. COPD is one of the noxious diseases and its fourth leading cause of death around the globe. There is an immediate need for potential drug development to tackle this serious disease. Folk medicines are used to combat complex diseases that have shown effectiveness in the treatment of breathing diseases. Vitex negundo L. is an ethnobotanically important medicinal plant used for various ailments and modulates human cellular events. This shrub has diverse specialized metabolites and is being used as complementary medicine in various countries. Though systems-level understanding is there on the mode of action, the multi-target treatment strategy for COPD is still a bottleneck. METHODS: In this investigation, systems pharmacology, cheminformatics, and molecular docking analyses were performed to unravel the multi-targeted mechanisms of V. negundo L. potential bioactives to combat COPD. RESULTS: Cheminformatics analysis combined with the target mining process identified 86 specialized metabolites and their corresponding 1300 direct human receptors, which were further imputed and validated systematically. Furthermore, molecular docking approaches were employed to evaluate the potential activity of identified potential compounds. In addition, pharmacological features of these bioactives were compared with available COPD drugs to recognize potential compounds that were found to be more efficacious with higher bioactive scores. CONCLUSIONS: The present study unravels the druggable targets and identifies the bioactive compounds present in V. negundo L., that may be utilized for potential treatment against COPD. However, further in vivo analyses and clinical trials of these molecules are essential to deciphering their efficacy.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Vitex , Humans , Molecular Docking Simulation , Network Pharmacology , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Vitex/metabolism
2.
Front Mol Biosci ; 8: 637329, 2021.
Article in English | MEDLINE | ID: mdl-34277698

ABSTRACT

SARS-CoV-2, an etiological agent of COVID-19, has been the reason for the unexpected global pandemic, causing severe mortality and imposing devastative effects on public health. Despite extensive research work put forward by scientist around globe, so far, no suitable drug or vaccine (safe, affordable, and efficacious) has been identified to treat SARS-CoV-2. As an alternative way of improvising the COVID-19 treatment strategy, that is, strengthening of host immune system, a great deal of attention has been given to phytocompounds from medicinal herbs worldwide. In a similar fashion, the present study deliberately focuses on the phytochemicals of three Indian herbal medicinal plants viz., Mentha arvensis, Coriandrum sativum, and Ocimum sanctum for their efficacy to target well-recognized viral receptor protein through molecular docking and dynamic analyses. Nucleocapsid phosphoprotein (N) of SARS-CoV-2, being a pivotal player in replication, transcription, and viral genome assembly, has been recognized as one of the most attractive viral receptor protein targets for controlling the viral multiplication in the host. Out of 127 phytochemicals screened, nine (linarin, eudesmol, cadinene, geranyl acetate, alpha-thujene, germacrene A, kaempferol-3-O-glucuronide, kaempferide, and baicalin) were found to be phenomenal in terms of exhibiting high binding affinity toward the catalytic pocket of target N-protein. Further, the ADMET prediction analysis unveiled the non-tumorigenic, noncarcinogenic, nontoxic, non-mutagenic, and nonreproductive nature of the identified bioactive molecules. Furthermore, the data of molecular dynamic simulation validated the conformational and dynamic stability of the docked complexes. Concomitantly, the data of the present study validated the anti-COVID efficacy of the bioactives from selected medicinal plants of Indian origin.

3.
Food Chem Toxicol ; 148: 111966, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33412235

ABSTRACT

BACKGROUND: COVID-19, the presently prevailing global public health emergency has culminated in international instability in economy. This unprecedented pandemic outbreak pressingly necessitated the trans-disciplinary approach in developing novel/new anti-COVID-19 drugs especially, small molecule inhibitors targeting the seminal proteins of viral etiological agent, SARS-CoV-2. METHODS: Based on the traditional medicinal knowledge, we made an attempt through molecular docking analysis to explore the phytochemical constituents of three most commonly used Indian herbs in 'steam inhalation therapy' against well recognized viral receptor proteins. RESULTS: A total of 57 phytochemicals were scrutinized virtually against four structural protein targets of SARS-CoV-2 viz. 3CLpro, ACE-2, spike glycoprotein and RdRp. Providentially, two bioactives from each of the three plants i.e. apigenin-o-7-glucuronide and ellagic acid from Eucalyptus globulus; eudesmol and viridiflorene from Vitex negundo and; vasicolinone and anisotine from Justicia adhatoda were identified to be the best hit lead molecules based on interaction energies, conventional hydrogen bonding numbers and other non-covalent interactions. On comparison with the known SARS-CoV-2 protease inhibitor -lopinavir and RdRp inhibitor -remdesivir, apigenin-o-7-glucuronide was found to be a phenomenal inhibitor of both protease and polymerase, as it strongly interacts with their active sites and exhibited remarkably high binding affinity. Furthermore, in silico drug-likeness and ADMET prediction analyses clearly evidenced the usability of the identified bioactives to develop as drug against COVID-19. CONCLUSION: Overall, the data of the present study exemplifies that the phytochemicals from selected traditional herbs having significance in steam inhalation therapy would be promising in combating COVID-19.


Subject(s)
COVID-19/therapy , Phytochemicals/administration & dosage , Administration, Inhalation , COVID-19/virology , Computer Simulation , Humans , Molecular Docking Simulation , Phytochemicals/pharmacology , SARS-CoV-2/isolation & purification , Steam
4.
Microbiol Res ; 242: 126601, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33010587

ABSTRACT

Plants are boon to the mankind due to plenty of metabolites with medicinal values. Though plants have traditionally been used to treat various diseases, their biological values are not completely explored yet. Sapindus mukorossi is one such ethnobotanical plant identified for various biological activities. As biofilm formation and biofilm mediated drug resistance of methicillin-resistant Staphylococcus aureus (MRSA) have raised as serious global issue, search for antibiofilm agents has gained greater importance. Notably, antibiofilm potential of S. mukorossi is still unexplored. The aim of the study is to explore the effect of S. mukorossi methanolic extract (SMME) on MRSA biofilm formation and adhesive molecules production. Significantly, SMME exhibited 82 % of biofilm inhibition at 250 µg/mL without affecting the growth and microscopic analyses evidenced the concentration dependent antibiofilm activity of SMME. In vitro assays exhibited the reduction in slime, cell surface hydrophobicity, autoaggregation, extracellular polysaccharides substance and extracellular DNA synthesis upon SMME treatment. Further, qPCR analysis confirmed the ability of SMME to interfere with the expression of adhesion genes associated with biofilm formation such as icaA, icaD, fnbA, fnbB, clfA, cna, and altA. GC-MS analysis and molecular docking study revealed that oleic acid is responsible for the antibiofilm activity. FT-IR analysis validated the presence of oleic acid in SMME. These results suggest that SMME can be used as a promising therapeutic agent against MRSA biofilm-associated infections.


Subject(s)
Biofilms/growth & development , Gene Expression/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Oleic Acid/pharmacology , Plant Extracts/pharmacology , Sapindus/chemistry , Anti-Bacterial Agents/pharmacology , Genes, Bacterial/genetics , Microbial Sensitivity Tests , Molecular Docking Simulation , Oleic Acid/chemistry , Polymerase Chain Reaction , Spectroscopy, Fourier Transform Infrared , Virulence Factors/genetics
5.
Genomics ; 112(6): 4486-4504, 2020 11.
Article in English | MEDLINE | ID: mdl-32771622

ABSTRACT

Understanding the immunological behavior of COVID-19 cases at molecular level is essential for therapeutic development. In this study, multi-omics and systems pharmacology analyses were performed to unravel the multi-targeted mechanisms of novel bioactives to combat COVID-19. Immuno-transcriptomic dataset of healthy controls and COVID-19 cases was retrieved from ArrayExpress. Phytocompounds from ethnobotanical plants were collected from PubChem. Differentially expressed 98 immune genes associated with COVID-19 were derived through NetworkAnalyst 3.0. Among 259 plant derived compounds, 154 compounds were targeting 13 COVID-19 immune genes involved in diverse signaling pathways. In addition, pharmacological properties of these phytocompounds were compared with COVID-19 drugs prescribed by WHO, and 25 novel phytocompounds were found to be more efficient with higher bioactive scores. The current study unravels the virogenomic signatures which can serve as therapeutic targets and identified phytocompounds with anti-COVID-19 efficacy. However, further experimental validation is essential to bring out these molecules as commercial drug candidates.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/immunology , Phytochemicals/pharmacology , Case-Control Studies , Computer Simulation , Data Mining , Gene Ontology , Gene Regulatory Networks , Humans , Transcriptome
6.
Sci Rep ; 10(1): 12883, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32733064

ABSTRACT

Nowadays, bioactive nanomaterials have been attracted the researcher's enthusiasm in various fields. Herein, Diplocyclos palmatus leaf extract-derived green-fluorescence carbon dots (DP-CDs) were prepared using the hydrothermal method. Due to the strong fluorescence stability, the prepared DP-CDs were coated on filter-paper to make a fluorometric sensor-strip for Fe3+ detection. After, a bandgap-narrowed DP-CDs/TiO2 nanocomposite (DCTN) was prepared using the methanolic extract of D. palmatus. The prepared DCTN exhibited improved photocatalytic bacterial deactivation under sunlight irradiation. The DCTN-photocatalysis slaughtered V. harveyi cells by the production of reactive oxygen species, which prompting oxidative stress, damaging the cell membrane and cellular constituents. These results suggest the plausible mode of bactericidal action of DCTN-photocatalysis under sunlight. Further, the DCTN has shown potent anti-biofilm activity against V. harveyi, and thereby, DCTN extended the survival of V. harveyi-infected shrimps during the in vivo trial with Litopenaeus vannamei. Notably, this is the first report for the disinfection of V. harveyi-mediated acute-hepatopancreatic necrosis disease (AHPND) using nanocomposite. The reduced internal-colonization of V. harveyi on the hepatopancreas as well as the rescue action of the pathognomonic effect in the experimental animals demonstrated the anti-infection potential of DCTN against V. harveyi-mediated AHPND in aquaculture.


Subject(s)
Aquaculture , Disinfection , Nanocomposites/chemistry , Photochemical Processes , Quantum Dots/chemistry , Titanium , Vibrio/growth & development , Cucurbitaceae/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Titanium/chemistry , Titanium/pharmacology
7.
J Photochem Photobiol B ; 201: 111637, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31706086

ABSTRACT

Plants are considered to be a leading source for possible human therapeutic agents. This holistic study has investigated the anti-quorum sensing (anti-QS), anti-infection, antioxidant and anti-photoaging properties of neglected plant Diplocyclos palmatus. The results showed that D. palmatus methanolic leaf extract (DPME) effectively inhibited the quorum sensing (QS) regulated virulence factor production as well as biofilm formation in Serratia marcescens. The transcriptomic analysis revealed that DPME significantly downed the expression of QS-regulated genes such as fimA, fimC, flhC, bsmB, pigP and shlA in S. marcescens, which supports the outcome of in vitro bioassays. Further, the docking study revealed that the presence of active compounds, namely tocopherols and phytol, DPME exhibited its anti-QS activity against S. marcescens. In addition, DPME treatment extended the lifespan of S. marcescens infected C. elegans by the action of dropping the internal accumulation. Further, qPCR analysis clearly revealed that DPME treatment significantly up-regulated the expression of the lifespan-related gene (daf-16) and immune-related genes (clec-60, clec-87, lys-7 and bec-1) in S. marcescens infected C.elegans. On the other hand, DPME extensively reduced the UV-A induced ROS stress, thereby, extended the lifespan in UV-A photoaged C. elegans. Further, the qPCR analysis also confirmed the up-regulation of daf-16, clec-60, clec-87 and col-19 genes which advocated the improvement of the lifespan, healthspan and collagen production in UV-A photoaged C. elegans. Further bioassays evidenced that that the lifespan extension of photoaged C. elegans was accomplished by the actions of antioxidants such as tocopherols and phytol in DPME.


Subject(s)
Aging/drug effects , Caenorhabditis elegans/radiation effects , Cucurbitaceae/chemistry , Plant Extracts/pharmacology , Quorum Sensing/drug effects , Serratia marcescens/physiology , Ultraviolet Rays , Aging/radiation effects , Animals , Antioxidants/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/drug effects , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Collagen/metabolism , Cucurbitaceae/metabolism , Longevity/drug effects , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Serratia Infections/pathology , Serratia Infections/veterinary , Up-Regulation/drug effects
8.
Med Res Rev ; 39(6): 2153-2171, 2019 11.
Article in English | MEDLINE | ID: mdl-31006878

ABSTRACT

Antiplatelet drugs reduce the risks associated with atherothrombotic events and show various applications in diverse cardiovascular diseases including myocardial infarctions. Efficacy of the current antiplatelet medicines including aspirin, clopidogrel, prasugrel and ticagrelor, and the glycoprotein IIb/IIIa antagonists, are limited due to their increased risks of bleeding, and antiplatelet drug resistance. Hence, it is important to develop new effective antiplatelet drugs, with fewer side-effects. The vast repertoire of natural peptides can be explored towards this goal. Proteins and peptides derived from snake venoms and plants represent exciting candidates for the development of novel and potent antiplatelet agents. Consequently, this review discusses multiple peptides that have displayed antiplatelet aggregation activity in preclinical drug development stages. This review also describes the antiplatelet mechanisms of the peptides, emphasizing the signaling pathways intervened by them. Also, the hurdles encountered during the development of peptides into antiplatelet drugs have been listed. Finally, hitherto unexplored peptides with the potential to prevent platelet aggregation are explored.


Subject(s)
Peptides/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Proteins/therapeutic use , Animals , Dietary Proteins/therapeutic use , Drug Evaluation, Preclinical , Humans , Peptides/pharmacokinetics , Plants/chemistry
9.
Mar Drugs ; 17(4)2019 Apr 18.
Article in English | MEDLINE | ID: mdl-31003533

ABSTRACT

Mangroves are ecologically important plants in marine habitats that occupy the coastlines of many countries. In addition to their key ecological importance, various parts of mangroves are widely used in folklore medicine and claimed to effectively manage a panoply of human pathologies. To date, no comprehensive attempt has been made to compile and critically analyze the published literature in light of its ethnopharmacological uses. This review aims to provide a comprehensive account of the morphological characteristics, ethnobotany, global distribution, taxonomy, ethnopharmacology, phytochemical profiles, and pharmacological activities of traditionally used mangroves. Out of 84 mangrove species, only 27 species were found to be traditionally used, however not all of them are pharmacologically validated. The most common pharmacological activities reported were antioxidant, antimicrobial, and antidiabetic properties. Mangroves traditionally reported against ulcers have not been extensively validated for possible pharmacological properties. Terpenoids, tannins, steroids, alkaloids, flavonoids, and saponins were the main classes of phytochemicals isolated from mangroves. Given that mangroves have huge potential for a wide array of medicinal products and drug discovery to prevent and treat many diseases, there is a dire need for careful investigations substantiated with accurate scientific and clinical evidence to ensure safety and efficient use of these plants and validate their pharmacological properties and toxicity.


Subject(s)
Avicennia/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Rhizophoraceae/chemistry , Animals , Avicennia/classification , Ethnopharmacology , Humans , Phytochemicals/chemistry , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plants, Medicinal , Rhizophoraceae/classification
10.
Crit Rev Food Sci Nutr ; 59(sup1): S39-S70, 2019.
Article in English | MEDLINE | ID: mdl-30040448

ABSTRACT

Onion, (Allium cepa L.), is one of the most consumed and grown vegetable crops in the world. Onion bulb, with its characteristic flavor, is the third most essential horticultural spice with a substantial commercial value. Apart from its culinary virtues, A. cepa is also used traditionally for its medicinal virtues in a plethora of indigenous cultures. Several publications have been produced in an endeavor to validate such traditional claims. Nonetheless, there is still a dearth of up-to-date, detailed compilation, and critical analysis of the traditional and ethnopharmacological propensities of A. cepa. The present review, therefore, aims to systematically review published literature on the traditional uses, pharmacological properties, and phytochemical composition of A. cepa. A. cepa was found to possess a panoply of bioactive compounds and numerous pharmacological properties, including antimicrobial, antioxidant, analgesic, anti-inflammatory, anti-diabetic, hypolipidemic, anti-hypertensive, and immunoprotective effects. Although a large number of in vitro and in vivo studies have been conducted, several limitations and research gaps have been identified which need to be addressed in future studies.


Subject(s)
Ethnopharmacology , Medicine, Traditional , Onions/chemistry , Plant Preparations/pharmacology , Analgesics/pharmacology , Animals , Anti-Infective Agents/analysis , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antihypertensive Agents/pharmacology , Antioxidants/pharmacology , Databases, Factual , Humans , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacology , Models, Animal , Phytochemicals , Phytotherapy , Plant Preparations/analysis , Plant Preparations/therapeutic use , Plants, Medicinal/chemistry
11.
Pharmacol Ther ; 194: 107-131, 2019 02.
Article in English | MEDLINE | ID: mdl-30268770

ABSTRACT

Flavonoids are natural polyphenolic compounds which are included in a panoply of drugs and used to treat and/or manage human ailments such as metabolic, cardiovascular, neurological disorders and cancer. Thus, the purpose of this review is to emphasize the importance of flavonoids for the treatment of autoimmune diseases and put into the limelight of the scientific community several health-promoting effects of flavonoids which could be beneficial for the development of novel drugs from natural products. Despite available reviews on flavonoids targeting various disease conditions, a comprehensive review of flavonoids for autoimmune diseases is still lacking. To the best of our knowledge, this is the first attempt to review the potential of flavonoids for autoimmune diseases. The structure-activity relationship of flavonoids in this review revealed that the rearrangement and introduction of other functional groups into the basic skeleton of flavonoids might lead to the development of new drugs which will be helpful in relieving the painful symptoms of various autoimmune diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Autoimmune Diseases/drug therapy , Flavonoids/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/toxicity , Autoimmune Diseases/genetics , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Flavonoids/toxicity , Gene Expression Regulation/drug effects , Humans , Structure-Activity Relationship
12.
Food Chem Toxicol ; 121: 622-630, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30268796

ABSTRACT

Tanshinone IIA is one of the most predominant bioactive constituents of Danshen, a traditional Chinese medicinal plant with multiple cardiovascular protective actions. Although Tanshinone IIA has been well documented for its endothelial protective efficacy, studies unveiling the mechanism and/or molecular targets for its pharmacological activity are still inadequate. In recent studies, it has been envisaged that the expression of pentraxin 3 (PTX3) was associated with atherosclerotic cardiovascular diseases (ACVD). Therefore, the current study was designed to evaluate the possible role of Tanshinone IIA in influencing the expression of PTX3 in endothelial cells and thereby prevents endothelial dysfunction. Molecular analyses through real-time PCR, western blot, and ELISA revealed that Tanshinone IIA down-regulates PTX3 gene expression as well as protein secretion in human endothelial cells in the presence or absence of TNF-α. Besides, Tanshinone IIA inhibits the adhesion of THP1 cells (a monocytic cell line) to activated-endothelial cells stimulated with TNF-α. Furthermore, mechanistic studies uncovered the role of p38 MAPK/NF-κB pathway in Tanshinone II-A mediated pharmacological effects. Thus, the present study exemplifies the manifestation of Tanshinone IIA as a plausible alternative natural remedy for ACVD by targeting PTX3.


Subject(s)
Abietanes/pharmacology , C-Reactive Protein/metabolism , Endothelial Cells/physiology , Gene Expression Regulation/drug effects , Monocytes/drug effects , Serum Amyloid P-Component/metabolism , Tumor Necrosis Factor-alpha/pharmacology , C-Reactive Protein/genetics , Cell Adhesion , Cell Line , Cell Survival , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Molecular Structure , Monocytes/physiology , NF-kappa B/metabolism , RNA Interference , Serum Amyloid P-Component/genetics
13.
J Basic Microbiol ; 58(4): 343-357, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29411881

ABSTRACT

Candida species are opportunistic fungal pathogens, which are known for their biofilm associated infections on implanted medical devices in clinical settings. Broad spectrum usage of azole groups and other antifungal agents leads to the occurrence of drug resistance among Candida species. Most of the antifungal agents have failed to treat the biofilm mediated Candida infections. In the present study, silver nanoparticles (AgNPs) were synthesized using Dodonaea viscosa and Hyptis suoveolens methanolic leaf extracts and characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy and Scanning electron microscopy, Dynamic light scattering, and Zeta potential analysis. The main goal of this study was to assess the AgNPs for their antibiofilm efficacy against Candida spp. through microscopic analysis and in vitro virulence assays. The results revealed that AgNPs strongly inhibited more than 80% biofilm formed by Candida spp. Furthermore, the AgNPs also reduced the yeast-to-hyphal transition, exopolysaccharide biosynthesis, secreted aspartyl proteinase production which are the major virulence factors of Candida species. This study reveals that biosynthesized AgNPs can be considered for the treatment of biofilm related Candida infections.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida/drug effects , Green Chemistry Technology , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Silver/chemistry , Antifungal Agents/chemistry , Aspartic Acid Endopeptidases/biosynthesis , Biofilms/growth & development , Fungal Polysaccharides/biosynthesis , Hyphae/growth & development , Lamiaceae , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Microscopy, Electron , Sapindaceae , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared , Virulence Factors/biosynthesis
14.
Sci Rep ; 7(1): 16328, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180790

ABSTRACT

Serratia marcescens is one of the important nosocomial pathogens which rely on quorum sensing (QS) to regulate the production of biofilm and several virulence factors. Hence, blocking of QS has become a promising approach to quench the virulence of S. marcescens. For the first time, QS inhibitory (QSI) and antibiofilm potential of Actinidia deliciosa have been explored against S. marcescens clinical isolate (CI). A. deliciosa pulp extract significantly inhibited the virulence and biofilm production without any deleterious effect on the growth. Vanillic acid was identified as an active lead responsible for the QSI activity. Addition of vanillic acid to the growth medium significantly affected the QS regulated production of biofilm and virulence factors in a concentration dependent mode in S. marcescens CI, ATCC 14756 and MG1. Furthermore vanillic acid increased the survival of Caenorhabditis elegans upon S. marcescens infection. Proteomic analysis and mass spectrometric identification of differentially expressed proteins revealed the ability of vanillic acid to modulate the expression of proteins involved in S-layers, histidine, flagellin and fatty acid production. QSI potential of the vanillic acid observed in the current study paves the way for exploring it as a potential therapeutic candidate to treat S. marcescens infections.


Subject(s)
Actinidia/chemistry , Anti-Bacterial Agents/pharmacology , Flagellin/metabolism , Plant Extracts/pharmacology , Serratia marcescens/drug effects , Serratia marcescens/physiology , Vanillic Acid/pharmacology , Virulence/drug effects , Animals , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Biofilms/drug effects , Caenorhabditis elegans/microbiology , Chromatography, Liquid , Dose-Response Relationship, Drug , Fatty Acids/biosynthesis , Mass Spectrometry , Plant Extracts/chemistry , Proteome , Proteomics/methods , Quorum Sensing/drug effects , Serratia marcescens/pathogenicity , Vanillic Acid/chemistry , Virulence Factors
15.
Environ Sci Pollut Res Int ; 24(35): 27254-27268, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28965300

ABSTRACT

The present study explores the non-bactericidal anti-virulence efficacy of green synthesized silver nanoparticles (AgNPs) from Gelidiella acerosa against multi-drug resistant Vibrio spp. Spectral characterization of AgNPs was performed through UV-Visible, FT-IR, and energy-dispersive spectroscopic techniques followed by X-ray crystallography and zeta potential analysis. Further, the structural characterization was done by electron and atomic force microscopic techniques. AgNPs profoundly quelled the quorum sensing mediated violacein production in Chromobacterium violaceum and CV026. Characterized AgNPs at 100 µg mL-1 concentrations depicted a phenomenal anti-biofilm efficacy against Vibrio parahaemolyticus (71%) and Vibrio vulnificus (83%) biofilms, which was further confirmed through light, confocal, and scanning electron microscopic analyses. In vitro bioassays revealed the remarkable inhibitory values of AgNPs, by inhibiting the exopolysaccharide production, hydrophobicity, and motility. In vivo studies using Artemia franciscana larvae also confirmed the anti-infective proficiency, as the AgNPs effectively reduced the bacterial colonization and enhanced the survival rate of larvae up to 100% without any toxicity effect. Graphical abstract Rapid biosynthesized AgNPs from Gelidiella acerosa quench quorum sensing controlled virulence traits in vibrios.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Metal Nanoparticles/chemistry , Rhodophyta/chemistry , Silver/pharmacology , Vibrio/drug effects , Vibrio/physiology , Animals , Artemia/drug effects , Chromobacterium/drug effects , Plant Extracts/pharmacology , Quorum Sensing/drug effects
16.
Microb Pathog ; 110: 313-324, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28710012

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a leading human pathogen responsible for causing chronic clinical manifestation worldwide. In addition to antibiotic resistance genes viz. mecA and vanA, biofilm formation plays a prominent role in the pathogenicity of S. aureus by enhancing its resistance to existing antibiotics. Considering the role of folk medicinal plants in the betterment of human health from the waves of multidrug resistant bacterial infections, the present study was intended to explore the effect of Vetiveria zizanioides root on the biofilm formation of MRSA and its clinical counterparts. V. zizanioides root extract (VREX) showed a concentration-dependent reduction in biofilm formation without hampering the cellular viability of the tested strains. Micrographs of scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) portrayed the devastating impact of VREX on biofilm formation. In addition to antibiofilm activity, VREX suppresses the production of biofilm related phenotypes such as exopolysaccharide, slime and α-hemolysin toxin. Furthermore, variation in FT-IR spectra evidenced the difference in cellular factors of untreated and VREX treated samples. Result of mature biofilm disruption assay and down regulation of genes like fnbA, fnbB, clfA suggested that VREX targets these adhesin genes responsible for initial adherence. GC-MS analysis revealed the presence of sesquiterpenes as a major constituent in VREX. Thus, the data of present study strengthen the ethnobotanical value of V. zizanioides and concludes that VREX contain bioactive molecules that have beneficial effect over the biofilm formation of MRSA and its clinical isolates.


Subject(s)
Biofilms/drug effects , Chrysopogon/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Plant Extracts/pharmacology , Plant Roots/chemistry , Adhesins, Bacterial/drug effects , Adhesins, Bacterial/genetics , Cell Survival/drug effects , Gene Expression Regulation, Bacterial/drug effects , Hemolysin Proteins/drug effects , Hemolysin Proteins/metabolism , Humans , Methicillin-Resistant Staphylococcus aureus/cytology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Plant Extracts/administration & dosage , Plants, Medicinal/chemistry , Spectroscopy, Fourier Transform Infrared , Staphylococcal Infections/microbiology , Virulence Factors/genetics
17.
Microb Pathog ; 110: 66-72, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28645774

ABSTRACT

The genus Malassezia comprises of extremely lipophilic yeasts secreting lipases as a vital factor for survival. They are emerging as opportunistic pathogens in medical microbiology and dermatology by causing recurring and recalcitrant infection. Combinatorial therapy is a constructive way to combat infectious diseases. In that prospect, totally 16 Indian medicinal plants were screened, among which a maximum degree of antimicrobial activity was ascertained in Embelia ribes. Subsequently embelin was identified as the bioactive principle with antagonistic potential by comparative antimicrobial assay and FTIR analysis. The MIC of embelin was determined as 400 µg/ml exhibiting ∼75% of growth inhibition. Further, a fungistatic activity based on anti-lipase potential (65-89%) of embelin has been clearly substantiated by XTT and lipase assay. In addition, embelin exhibited a synergistic effect with the antifungal drug ketoconazole (KTZ) against four different Malassezia spp. with FIC index of 0.5. Therefore, the combinations of embelin and KTZ may represent a promising therapeutic regimen to treat Malassezia infections with subjugated clinical and environmental toxicity. To the best of our knowledge, this is the first report delineating the anti-lipase activity of embelin and in vitro synergistic interaction between embelin and KTZ against Malassezia spp.


Subject(s)
Antifungal Agents/pharmacology , Benzoquinones/pharmacology , Ketoconazole/pharmacology , Malassezia/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Benzoquinones/chemistry , Benzoquinones/isolation & purification , Drug Combinations , Drug Synergism , Embelia/chemistry , Humans , India , Lipase/drug effects , Malassezia/growth & development , Malassezia/pathogenicity , Microbial Sensitivity Tests , Triazoles/pharmacology
18.
J Ethnopharmacol ; 193: 592-603, 2016 Dec 04.
Article in English | MEDLINE | ID: mdl-27721053

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Piper betle, a tropical creeper plant belongs to the family Piperaceae. The leaves of this plant have been well known for their therapeutic, religious and ceremonial value in South and Southeast Asia. It has also been reported to possess several biological activities including antimicrobial, antioxidant, antinociceptive, antidiabetic, insecticidal and gastroprotective activities and used as a common ingredient in indigenous medicines. In Indian system of ayurvedic medicine, P. betle has been well recognized for its antiseptic properties and is commonly applied on wounds and lesions for its healing effects. AIM OF THE STUDY: To evaluate the anti-quorum sensing (anti-QS) and antibiofilm efficacy of P. betle and its bioactive metabolite phytol against Serratia marcescens. MATERIALS AND METHODS: The P. betle ethyl acetate extract (PBE) was evaluated for its anti-QS efficacy against S. marcescens by assessing the prodigiosin and lipase production at 400 and 500µgml-1 concentrations. In addition, the biofilm biomass quantification assay was performed to evaluate the antibiofilm activity of PBE against S. marcescens. Besides, the influence of PBE on bacterial biofilm formation was assessed through microscopic techniques. The biofilm related phenomenons like exopolysaccharides (EPS) production, hydrophobicity and swarming motility were also examined to support the antibiofilm activity of PBE. Transcriptional analysis of QS regulated genes in S. marcescens was also done. Characterization of PBE was done by separation through column chromatography and identification of active metabolites by gas chromatography -mass spectrometry. The major compounds of active fractions such as hexadecanoic acid, eugenol and phytol were assessed for their anti-QS activity against S. marcescens. Further, the in vitro bioassays such as protease, biofilm and HI quantification were also carried out to confirm the anti-QS and antibiofilm potential of phytol in PBE. RESULTS: PBE inhibits QS mediated prodigiosin pigment production in S. marcescens, which confirmed its anti-QS potential against S. marcescens. At 500µgml-1 concentration, PBE significantly inhibited the production of protease, lipase, biofilm and EPS to the level of 71%, 68%, 65% and 43% in S. marcescens, respectively. Further, their antibiofilm efficacy was confirmed through microscopic techniques. In addition, PBE effectively inhibited the hydrophobicity and swarming motility. Additionally, the results of qPCR analysis validated the downregulation of QS genes. Chromatographic techniques the presence of hexadecanoic acid, eugenol and phytol in PBE and the potential bioactive compound with anti-QS activity was identified as phytol. In vitro assays with phytol evidenced the potent inhibition of QS-controlled prodigiosin, protease, biofilm and hydrophobicity in S. marcescens, without exerting any deleterious effect on its growth. CONCLUSION: This study demonstrates the promising anti-QS and antibiofilm activities of PBE and its active metabolite phytol, and confirms the ethnopharmacological applications of these leaves against S. marcescens infections.


Subject(s)
Biofilms/drug effects , Phytol/pharmacology , Piper betle/chemistry , Quorum Sensing/drug effects , Serratia marcescens/drug effects , Biofilms/growth & development , Biomass , Cross Infection/microbiology , Cross Infection/urine , Dose-Response Relationship, Drug , Humans , Microscopy, Confocal , Microscopy, Electron, Scanning , Phytol/isolation & purification , Piper betle/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Prodigiosin/antagonists & inhibitors , Serratia marcescens/growth & development , Serratia marcescens/metabolism , Serratia marcescens/pathogenicity , Virulence
19.
Bioresour Technol ; 213: 289-298, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27156595

ABSTRACT

The present study was attempted to enhance the production of naphthoquinones and phenolics by Fusarium solani PSC-R of Palk Bay origin, which exhibited potent antibacterial, antioxidant and dyeing activity. Maximum productivity of naphthoquinones and phenolics was achieved in potato infusion medium supplemented with 2% sucrose. Addition of nitrogen sources to the medium adversely affected the production of both naphthoquinones and phenolics. An initial pH of 5 and incubation at 31°C for six days at 140rpm was found to increase the yield (123.65mg/g of DW), concentration (867.33mg/l) and total naphthoquinones (602.8µM/g DW) by 7.58, 10.44 and 3.68-fold respectively. Similarly, the antioxidant and antibacterial activity associated with the phenolics of PSC-R increased by 1.5-fold in the optimized medium. The obtained results document the effective means of enhanced production of naphthoquinones and phenolics in the suspension culture of F. solani PSC-R at bioreactor level.


Subject(s)
Fusarium/metabolism , Industrial Microbiology/methods , Naphthoquinones/metabolism , Phenols/metabolism , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Bioreactors , Culture Media/chemistry , Hydrogen-Ion Concentration , India , Industrial Microbiology/instrumentation , Nitrogen/metabolism , Solanum tuberosum , Temperature
20.
Biofouling ; 31(9-10): 721-33, 2015.
Article in English | MEDLINE | ID: mdl-26571230

ABSTRACT

The aim of this study was to evaluate the anti-biofilm and quorum sensing inhibitory (QSI) potential of tender coconut water (TCW) against Chromobacterium violaceum and Pseudomonas aeruginosa. TCW significantly inhibited the QS regulated violacein, virulence factors and biofilm production without affecting their growth. qRT-PCR analysis revealed the down-regulation of autoinducer synthase, transcriptional regulator and virulence genes. Mass-spectrometric analysis of a petroleum ether extract of the TCW hydrolyte revealed that 2-furaldehyde diethyl acetal (2FDA) and palmitic acid (PA) are the major compounds. In vitro bioassays confirmed the ability of 2FDA to inhibit the biofilm formation and virulence factors. In addition, the combination of PA with 2FDA resulted in potent inhibition of biofilm formation and virulence factors. The results obtained strongly suggest that TCW can be exploited as a base for designing a novel antipathogenic drug formulation to treat biofilm mediated infections caused by P. aeruginosa.


Subject(s)
Biofilms/drug effects , Chromobacterium/drug effects , Cocos/chemistry , Furaldehyde/analogs & derivatives , Furaldehyde/pharmacology , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Biofilms/growth & development , Chromobacterium/growth & development , Chromobacterium/pathogenicity , Cocos/growth & development , Down-Regulation , Furaldehyde/isolation & purification , India , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/pathogenicity , Virulence/drug effects , Virulence Factors/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL