Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Immunol ; 15: 1381340, 2024.
Article in English | MEDLINE | ID: mdl-38633246

ABSTRACT

Background: In addition to abnormal liver inflammation, the main symptoms of non-alcoholic steatohepatitis (NASH) are often accompanied by gastrointestinal digestive dysfunction, consistent with the concept of spleen deficiency (SD) in traditional Chinese medicine. As an important metabolic sensor, whether peroxisome proliferator-activated receptor alpha (PPARα) participates in regulating the occurrence and development of NASH with SD (NASH-SD) remains to be explored. Methods: Clinical liver samples were collected for RNA-seq analysis. C57BL/6J mice induced by folium sennae (SE) were used as an SD model. qPCR analysis was conducted to evaluate the inflammation and metabolic levels of mice. PPARα knockout mice (PPARαko) were subjected to SE and methionine-choline-deficient (MCD) diet to establish the NASH-SD model. The phenotype of NASH and the inflammatory indicators were measured using histopathologic analysis and qPCR as well. Results: The abnormal expression of PPARα signaling, coupled with metabolism and inflammation, was found in the results of RNA-seq analysis from clinical samples. SD mice showed a more severe inflammatory response in the liver evidenced by the increases in macrophage biomarkers, inflammatory factors, and fibrotic indicators in the liver. qPCR results also showed differences in PPARα between SD mice and control mice. In PPARαko mice, further evidence was found that the lack of PPARα exacerbated the inflammatory response phenotype as well as the lipid metabolism disorder in NASH-SD mice. Conclusion: The abnormal NR signaling accelerated the vicious cycle between lipotoxicity and inflammatory response in NAFLD with SD. Our results provide new evidence for nuclear receptors as potential therapeutic targets for NAFLD with spleen deficiency.


Subject(s)
Non-alcoholic Fatty Liver Disease , PPAR alpha , Animals , Mice , Inflammation , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism , Spleen/metabolism , Spleen/pathology
2.
Molecules ; 28(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36770971

ABSTRACT

Cellular mesenchymal-epithelial transition factor (c-Met), an oncogenic transmembrane receptor tyrosine kinase (RTK), plays an essential role in cell proliferation during embryo development and liver regeneration. Thioredoxin reductase (TrxR) is overexpressed and constitutively active in most tumors closely related to cancer recurrence. Multi-target-directed ligands (MTDLs) strategy provides a logical approach to drug combinations and would adequately address the pathological complexity of cancer. In this work, we designed and synthesized a series of selenium-containing tepotinib derivatives by means of selenium-based bioisosteric modifications and evaluated their antiproliferative activity. Most of these selenium-containing hybrids exhibited potent dual inhibitory activity toward c-Met and TrxR. Among them, compound 8b was the most active, with an IC50 value of 10 nM against MHCC97H cells. Studies on the mechanism of action revealed that compound 8b triggered cell cycle arrest at the G1 phase and caused ROS accumulations by targeting TrxR, and these effects eventually led to cell apoptosis. These findings strongly suggest that compound 8b serves as a dual inhibitor of c-Met and TrxR, warranting further exploitation for cancer therapy.


Subject(s)
Antineoplastic Agents , Selenium , Antineoplastic Agents/pharmacology , Thioredoxin-Disulfide Reductase/metabolism , Selenium/pharmacology , Piperidines/pharmacology , Cell Proliferation , Drug Screening Assays, Antitumor
3.
J Med Chem ; 60(17): 7300-7314, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28792756

ABSTRACT

Two series of structurally related organoselenium compounds designed by fusing the anticancer agent methyl(phenyl)selane into the tubulin polymerization inhibitors isocombretastatins or phenstatins were synthesized and evaluated for antiproliferative activity. Most of these selenium containing hybrids exhibited potent cytotoxicity against a panel of cancel cell lines, with IC50 values in the submicromolar concentration range. Among them, 11a, the 3-methylseleno derivative of isocombretastatin A-4 (isoCA-4) represented the most active compound with IC50 values of 2-34 nM against 12 cancer cell lines, including two drug-resistant cell lines. Importantly, its phosphate salt, 11ab, inhibited tumor growth in xenograft mice models with inhibitory rate of 72.9% without apparent toxicity, which was better than the reference compounds isoCA-4P (inhibitory rate 52.2%) and CA-4P (inhibitory rate 47.6%). Mechanistic studies revealed that 11a is a potent tubulin polymerization inhibitor, which could arrest cell cycle at G2/M phase and induce apoptosis along with the decrease of mitochondrial membrane potential. In summary, 11a could serve as a promising lead for the development of highly efficient anticancer agents.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Selenium/chemistry , Selenium/pharmacology , Stilbenes/chemistry , Stilbenes/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , G2 Phase/drug effects , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Rats, Sprague-Dawley , Selenium/therapeutic use , Stilbenes/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL