Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Drug Dev Res ; 84(3): 579-591, 2023 05.
Article in English | MEDLINE | ID: mdl-36811607

ABSTRACT

Alizarin (1,2-dihydroxyanthraquinone) is an anthraquinone reddish dye widely used for painting and textile dyeing. As the biological activity of alizarin has recently attracted increasing attention from researchers, its therapeutic potential as complementary and alternative medicine is of interest. However, no systematic research has been conducted on the biopharmaceutical and pharmacokinetic aspects of alizarin. Therefore, this study aimed to comprehensively investigate the oral absorption and intestinal/hepatic metabolism of alizarin using a simple and sensitive tandem mass spectrometry method developed and validated in-house. The present method for the bioanalysis of alizarin has merits, including a simple pretreatment procedure, small sample volume, and adequate sensitivity. Alizarin exhibited pH-dependent moderate lipophilicity and low solubility with limited intestinal luminal stability. Based on the in vivo pharmacokinetic data, the hepatic extraction ratio of alizarin was estimated to be 0.165-0.264, classified as a low level of hepatic extraction. In an in situ loop study, considerable fractions (28.2%-56.4%) of the alizarin dose were significantly absorbed in gut segments from the duodenum to ileum, suggesting that alizarin may be classified as the Biopharmaceutical Classification System class II. An in vitro metabolism study using rat and human hepatic S9 fractions revealed that glucuronidation and sulfation, but not NADPH-mediated phase I reactions and methylation, are significantly involved in the hepatic metabolism of alizarin. Taken together, it can be estimated that the fractions of oral alizarin dose unabsorbed from the gut lumen and eliminated by the gut and liver before reaching the systemic circulation are 43.6%-76.7%, 0.474%-36.3%, and 3.77%-5.31% of the dose, respectively, resulting in a low oral bioavailability of 16.8%. Therefore, the oral bioavailability of alizarin depends primarily on its chemical degradation in the gut lumen and secondarily on first-pass metabolism.


Subject(s)
Biological Products , Tandem Mass Spectrometry , Rats , Humans , Animals , Biological Availability , Chromatography, Liquid , Rats, Sprague-Dawley , Anthraquinones , Administration, Oral
2.
Neuropsychologia ; 106: 7-20, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28827155

ABSTRACT

Previous psychophysiological assessments of mental workload have relied on the addition of visual or auditory stimuli. This study investigated the tactile ERP and EEG spectral power correlates of mental workload by relating limited-capacity involuntary attention allocation to changes in late positive potential (LPP) amplitude, alpha, and theta powers. We examined whether mental workload (high-level cognitive control) can be evaluated using somatosensory stimuli. Sixteen participants all performed three tasks of varying difficulty. Two dual n-back tasks (n = 1 and 2) were used to investigate the degree to which mental workload affected the LPP amplitudes and EEG spectral powers evoked by ignoring salient tactile stimuli. In control trials, tactile vibrations were applied at random without dual n-back tasks. Subjective mental workload of each task was rated using the NASA Task Load Index. LPP amplitudes at Pz were significantly smaller in the dual-2-back trials compared to control and dual-1-back trials. Significantly increased theta power at Fz and reduced alpha power at Pz were found in the dual-2-back condition compared to control and dual-1-back condition. There was no significant difference between control and dual-1-back trials. The same pattern was found for subjective ratings of cognitive workload. These results indicate that the dual-2-back task imposed a significantly greater mental workload, causing impaired cognitive-control functions. Our findings support the notion that selective attention mechanisms necessary for effectively allocating and modulating attentional resources are temporarily impaired during the mentally overloaded state.


Subject(s)
Attention/physiology , Evoked Potentials, Somatosensory/physiology , Mental Processes/physiology , Psychomotor Performance/physiology , Somatosensory Cortex/physiology , Acoustic Stimulation , Adult , Electroencephalography , Electrooculography , Female , Humans , Male , Photic Stimulation , Random Allocation , Reaction Time/physiology , Touch/physiology , Workload , Young Adult
3.
Int J Psychophysiol ; 94(3): 373-81, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25194505

ABSTRACT

This study investigated behavioral responses to and auditory event-related potential (ERP) correlates of mental fatigue caused by mobile three-dimensional (3D) viewing. Twenty-six participants (14 women) performed a selective attention task in which they were asked to respond to the sounds presented at the attended side while ignoring sounds at the ignored side before and after mobile 3D viewing. Considering different individual susceptibilities to 3D, participants' subjective fatigue data were used to categorize them into two groups: fatigued and unfatigued. The amplitudes of d-ERP components were defined as differences in amplitudes between time-locked brain oscillations of the attended and ignored sounds, and these values were used to calculate the degree to which spatial selective attention was impaired by 3D mental fatigue. The fatigued group showed significantly longer response times after mobile 3D viewing compared to before the viewing. However, response accuracy did not significantly change between the two conditions, implying that the participants used a behavioral strategy to cope with their performance accuracy decrement by increasing their response times. No significant differences were observed for the unfatigued group. Analysis of covariance revealed group differences with significant and trends toward significant decreases in the d-P200 and d-late positive potential (LPP) amplitudes at the occipital electrodes of the fatigued and unfatigued groups. Our findings indicate that mentally fatigued participants did not effectively block out distractors in their information processing mechanism, providing support for the hypothesis that 3D mental fatigue impairs spatial selective attention and is characterized by changes in d-P200 and d-LPP amplitudes.


Subject(s)
Acoustic Stimulation/methods , Attention/physiology , Imaging, Three-Dimensional/adverse effects , Mental Fatigue/physiopathology , Photic Stimulation/adverse effects , Reaction Time/physiology , Adult , Cell Phone , Female , Humans , Male , Mental Fatigue/diagnosis , Mental Fatigue/psychology , Young Adult
4.
J Nutr Biochem ; 24(5): 868-76, 2013 May.
Article in English | MEDLINE | ID: mdl-22902330

ABSTRACT

Because the interaction between omega-3 fatty acids and mast cells has remained largely unknown in allergies, we investigated whether omega-3 fatty acids affect the activation of mast cells by examining Th2-associated cytokine production and possible molecular mechanisms. Alpha-linolenic acid and its metabolites including eicosapentaenoic acid and decosahexaenoic acid induced a dramatic decrease in the production of interleukin (IL)-4, IL-5 and IL-13 in a dose-dependent manner, as well as mRNA expression of their genes, in activated MC/9 mast cells and bone marrow-derived mast cells. The effects were comparable to those of cyclosporin A (1 µM), a well-known immunosuppressive agent. Nuclear expression of GATA binding protein-1 (GATA-1) and GATA binding protein-2 (GATA-2), essential transcription factors for mast cell activation, was also greatly suppressed. However, their mRNA expressions were not affected. In P815 mast cells, which do not express GATA-1, the suppressive effects on cytokines were abolished. On the contrary, omega-3 fatty acids had less significant effects on IL-4 and IL-5 and resulted in a slight decrease in IL-13 production in EL-4 T cells. Finally, oral administration of fish oil containing high level of omega-3 fatty acids significantly reduced the severity of dermatitis and the thickening of epidermis/dermis in a NC/Nga murine atopic model. The number of cells expressing CD117(+) and FcεRIα(+) was greatly decreased and GATA-1 expression in the cells was also diminished. Taken together, omega-3 fatty acids might target mast cells to a greater extent than T cells to suppress Th2 cytokine expression by inhibiting GATAs for alleviation of allergic disease.


Subject(s)
Fatty Acids, Omega-3/administration & dosage , GATA2 Transcription Factor/metabolism , Gene Expression/drug effects , Mast Cells/drug effects , Th2 Cells/drug effects , Animals , Dermatitis/drug therapy , Dermatitis/pathology , Down-Regulation , Fish Oils/administration & dosage , Flow Cytometry , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , Interleukin-13/biosynthesis , Interleukin-4/biosynthesis , Interleukin-5/biosynthesis , Male , Mast Cells/metabolism , Mice , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL