Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
ChemSusChem ; 9(11): 1329-38, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27106165

ABSTRACT

A newly prepared type of carbon felt with oxygen-rich phosphate groups is proposed as a promising electrode with good stability for all-vanadium redox flow batteries (VRFBs). Through direct surface modification with ammonium hexafluorophosphate (NH4 PF6 ), phosphorus can be successfully incorporated onto the surface of the carbon felt by forming phosphate functional groups with -OH chemical moieties that exhibit good hydrophilicity. The electrochemical reactivity of the carbon felt toward the redox reactions of VO(2+) /VO2 (+) (in the catholyte) and V(3+) /V(2+) (in the anolyte) can be effectively improved owing to the superior catalytic effects of the oxygen-rich phosphate groups. Furthermore, undesirable hydrogen evolution can be suppressed by minimizing the overpotential for the V(3+) /V(2+) redox reaction in the anolyte of the VRFB. Cell-cycling tests with the catalyzed electrodes show improved energy efficiencies of 88.2 and 87.2 % in the 1(st) and 20(th)  cycles compared with 83.0 and 81.1 %, respectively, for the pristine electrodes at a constant current density of 32 mA cm(-2) . These improvements are mainly attributed to the faster charge transfer allowed by the integration of the oxygen-rich phosphate groups on the carbon-felt electrode.


Subject(s)
Carbon/chemistry , Electric Power Supplies , Oxygen/chemistry , Vanadium/chemistry , Catalysis , Electrochemistry , Electrodes , Oxidation-Reduction , Phosphorus/chemistry , Wettability
2.
ChemSusChem ; 8(4): 688-94, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25581319

ABSTRACT

Mesoporous silicon-based materials gained considerable attention as high-capacity lithium-storage materials. However, the practical use is still limited by the complexity and limited number of available synthetic routes. Here, we report carbon-coated porous SiOx as high capacity lithium storage material prepared by using a sol-gel reaction of hydrogen silsesquioxane and oil-water templating. A hydrophobic oil is employed as a pore former inside the SiOx matrix and a precursor for carbon coating on the SiOx . The anode exhibits a high capacity of 730 mAh g(-1) and outstanding cycling performance over 100 cycles without significant dimensional changes. Carbon-coated porous SiOx also showed highly stable thermal reliability comparable to that of graphite. These promising properties come from the mesopores in the SiOx matrix, which ensures reliable operation of lithium storage in SiOx . The scalable sol-gel process presented here can open up a new avenue for the versatile preparation of porous SiOx lithium storage materials.


Subject(s)
Electric Power Supplies , Lithium/chemistry , Oxides/chemistry , Silicon/chemistry , Calorimetry, Differential Scanning , Electrochemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Porosity , Powder Diffraction , Soybean Oil/chemistry , Spectrum Analysis/methods , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL