Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plants (Basel) ; 10(5)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066714

ABSTRACT

Light emitting diodes (LEDs) have recently been considered an efficient artificial light source in plant factories for enhancing plant growth and nutritional quality. Accordingly, this study aimed to review blue, red, and white LED light sources for efficiency and length of the growing period to produce seedlings of Scutellaria baicalensis with high nutritional value. The roots, stems, and leaves of S. baicalensis seedlings were grown under different LED lights and harvested after two and four weeks, and analyzed using high-performance liquid chromatography and gas chromatography time-of-flight mass spectrometry to identify and quantify primary and secondary metabolites. Roots, particularly in the seedlings treated with white LEDs were determined to contain the greatest concentrations of the representative compounds present in S. baicalensis: baicalin, baicalein, and wogonin, which show highly strong biological properties compared to the other plant organs. A total of 50 metabolites (amino acids, sugars, sugar alcohols, organic acids, phenolic acids, and amines) were detected in the roots, stems, and leaves of S. baicalensis seedlings, and the concentrations of primary and secondary metabolites were generally decreased with the increasing duration of LED illumination. Therefore, this study suggests that white LED light and a 2-week growing period are the most efficient conditions for the production of baicalin, baicalein, and wogonin.

2.
J Agric Food Chem ; 69(4): 1300-1307, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33494603

ABSTRACT

We profiled and quantified primary (amine, organic acids, tricarboxylic acid cycle intermediates, amino acids, and carbohydrates) and secondary metabolites (triterpenoids, phenolic acids, carotenoids, flavonoids, and anthocyanins) in the edible parts (leaves and fruits) of the diploid and tetraploid cultivar Morus alba L. 'Cheongil.' Through comprehensive metabolic profiling, the tetraploid mulberry cultivar was able to produce diverse metabolites supported by higher accumulation patterns of primary and secondary metabolites in their edible parts. In particular, the edible parts of the tetraploid showed higher accumulation patterns of most metabolites (amino acids, carbohydrates, carotenoids, and anthocyanins) than the diploid, which was supported by the results of principal component analyses (PCAs) showing a clear separation between the diploid and tetraploid groups. Additionally, this metabolome study comprehensively described the correlation between primary and secondary metabolites in the edible parts of diploid and tetraploid mulberry cultivars and provided information useful for plant breeding strategies to improve metabolite biosynthesis using polyploidy.


Subject(s)
Fruit/chemistry , Fruit/metabolism , Morus/genetics , Anthocyanins/analysis , Anthocyanins/metabolism , Carotenoids/analysis , Carotenoids/metabolism , Diploidy , Fruit/genetics , Metabolomics , Morus/chemistry , Morus/metabolism , Plant Extracts , Secondary Metabolism , Tetraploidy
3.
PLoS One ; 13(12): e0208344, 2018.
Article in English | MEDLINE | ID: mdl-30533012

ABSTRACT

Adlay (Coix lacryma-jobi) is a tropical grass that has long been used in traditional Chinese medicine and is known for its nutritional benefits. Recent studies have shown that vitamin E compounds in adlay protect against chronic diseases such as cancer and heart disease. However, the molecular basis of adlay's health benefits remains unknown. Here, we generated adlay gene sets by de novo transcriptome assembly using long-read isoform sequencing (Iso-Seq) and short-read RNA-Sequencing (RNA-Seq). The gene sets obtained from Iso-seq and RNA-seq contained 31,177 genes and 57,901 genes, respectively. We confirmed the validity of the assembled gene sets by experimentally analyzing the levels of prolamin and vitamin E biosynthesis-associated proteins in adlay plant tissues and seeds. We compared the screened adlay genes with known gene families from closely related plant species, such as rice, sorghum and maize. We also identified tissue-specific genes from the adlay leaf, root, and young and mature seed, and experimentally validated the differential expression of 12 randomly-selected genes. Our study of the adlay transcriptome will provide a valuable resource for genetic studies that can enhance adlay breeding programs in the future.


Subject(s)
Coix/genetics , Sequence Analysis, RNA/methods , Transcriptome/genetics , Coix/metabolism , Prolamins/metabolism , Protein Isoforms/genetics , Sorghum/genetics , Vitamin E/metabolism , Zea mays/genetics
4.
Molecules ; 23(7)2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29954130

ABSTRACT

A total of seven phenolics and 44 metabolites was profiled in white flowers of Magnolia denudata and violet flowers of Magnolia liliiflora using high-performance liquid chromatography (HPLC), electrospray ionization-mass spectrometry (ESI-MS), and gas chromatography time-of-flight mass spectrometry (GC-TOFMS). Seven phenylpropanoid compounds were identified in white flowers by liquid chromatography mass spectrometry (LC-MS). An HPLC analysis showed that phenylpropanoid accumulation in violet flowers was 1.48 times higher than that in white flowers. Furthermore, superoxide dismutase (SOD)-like activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were determined to investigate the antioxidant properties of secondary metabolites in different flowers. Violet flowers showed higher SOD-like and DPPH activity than white flowers. In addition, anti-inflammatory activity measured using a nitric oxide assay was higher in violet flowers than in white flowers. Our results provide valuable information on the relationship between primary and secondary metabolites, and synergistic antioxidant and anti-inflammatory properties derived from phenolic compounds in different colored flowers.


Subject(s)
Flowers/chemistry , Magnolia/chemistry , Antioxidants/chemistry , Biphenyl Compounds/chemistry , Chromatography, High Pressure Liquid , Picrates/chemistry , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization , Superoxide Dismutase/metabolism
5.
Molecules ; 21(2): 157, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26828471

ABSTRACT

A total of 13 anthocyanins and 33 metabolites; including organic acids, phenolic acids, amino acids, organic compounds, sugar acids, sugar alcohols, and sugars, were profiled in three radish cultivars by using high-performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOFMS)-based metabolite profiling. Total phenolics and flavonoids and their in vitro antioxidant activities were assessed. Pelargonidins were found to be the major anthocyanin in the cultivars studied. The cultivar Man Tang Hong showed the highest level of anthocyanins (1.89 ± 0.07 mg/g), phenolics (0.0664 ± 0.0033 mg/g) and flavonoids (0.0096 ± 0.0004 mg/g). Here; the variation of secondary metabolites in the radishes is described, as well as their association with primary metabolites. The low-molecular-weight hydrophilic metabolite profiles were subjected to principal component analysis (PCA), hierarchical clustering analysis (HCA), Pearson's correlation analysis. PCA fully distinguished the three radish cultivars tested. The polar metabolites were strongly correlated between metabolites that participate in the TCA cycle. The chemometrics results revealed that TCA cycle intermediates and free phenolic acids as well as anthocyanins were higher in the cultivar Man Tang Hong than in the others. Furthermore; superoxide radical scavenging activities and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging were investigated to elucidate the antioxidant activity of secondary metabolites in the cultivars. Man Tang Hong showed the highest superoxide radical scavenging activity (68.87%) at 1000 µg/mL, and DPPH activity (20.78%), followed by Seo Ho and then Hong Feng No. 1. The results demonstrate that GC-TOFMS-based metabolite profiling, integrated with chemometrics, is an applicable method for distinguishing phenotypic variation and determining biochemical reactions connecting primary and secondary metabolism. Therefore; this study might provide information on the relationship between primary and secondary metabolites and a synergistic antioxidant ability derived from the secondary metabolites in the radish cultivars.


Subject(s)
Antioxidants/isolation & purification , Antioxidants/pharmacology , Metabolomics/methods , Raphanus/chemistry , Anthocyanins/isolation & purification , Anthocyanins/pharmacology , Antioxidants/chemistry , Chromatography, High Pressure Liquid/methods , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Oxidative Stress/drug effects , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Plant Extracts/analysis , Principal Component Analysis , Raphanus/classification
6.
J Agric Food Chem ; 62(12): 2701-8, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24588473

ABSTRACT

Rutin is an important indicator for evaluating the quality of buckwheat. In this study, flavonoid biosynthesis was compared between two common cultivars (an original and a high-rutin line) of buckwheat, Fagopyrum esculentum Moench. Transcriptional levels of the main flavonoid biosynthetic genes were analyzed by real-time PCR, and main flavonoid metabolites were detected by high-performance liquid chromatography (HPLC); levels of gene expression varied among organs of the two cultivars. Significantly higher transcription levels of most flavonoid biosynthetic genes, except FeFLS1, were detected in stems of the high-rutin line than in stems of the original line. FeCHI and FeFLS2 genes also showed higher expression levels in seeds of the high-rutin cultivar. In contrast, FePAL, FeC4H, Fe4CL1, FeCHS, FeF3H, FeF3'H, FeFLS2, and FeDFR were highly detected in the roots of the original line. The HPLC results indicated 1.73-, 1.62-, and 1.77-fold higher accumulation of rutin (the primary flavonoid compound) in leaves, stems, and mature seeds of the high-rutin cultivar (24.86, 1.46, and 1.36 µg/mg, respectively) compared with the original cultivar (14.40, 0.90, and 0.77 µg/mg, respectively). A total of 46 metabolites were identified from seeds by gas chromatography-time-of-flight mass spectrometry. The metabolite profiles were subjected to principal component analysis (PCA). PCA could clearly differentiate the original and high-rutin cultivars. Our results indicate that the high-rutin cultivar could be an excellent alternative for buckwheat culture, and we provide useful information for obtaining this cultivar.


Subject(s)
Fagopyrum/chemistry , Flavonoids/chemistry , Flavonoids/metabolism , Metabolome , Rutin/analysis , Fagopyrum/classification , Fagopyrum/genetics , Fagopyrum/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/classification , Seeds/genetics , Seeds/metabolism
7.
J Agric Food Chem ; 61(44): 10525-33, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24083509

ABSTRACT

Red-flowered buckwheat ( Fagopyrum esculentum ) is used in the production of tea, juice, and alcohols after the detoxification of fagopyrin. In order to investigate the metabolomics and regulatory of anthocyanin production in red-flowered (Gan-Chao) and white-flowered (Tanno) buckwheat cultivars, quantitative real-time RT-PCR (qRT-PCR), gas chromatography time-of-flight mass spectrometry (GC-TOFMS), and high performance liquid chromatography (HPLC) were conducted. The transcriptions of FePAL, FeC4H, Fe4CL1, FeF3H, FeANS, and FeDFR increased gradually from flowering stage 1 and reached their highest peaks at flowering stage 3 in Gan-Chao flower. In total 44 metabolites, 18 amino acids, 15 organic acids, 7 sugars, 3 sugar alcohols, and 1 amine were detected in Gan-Chao flowers. Two anthocyanins, cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside, were identified in Gan-Chao cultivar. The first component of the partial least-squares to latent structures-discriminate analysis (PLS-DA) indicated that high amounts of phenolic, shikimic, and pyruvic acids were present in Gan-Chao. We suggest that transcriptions of genes involved in anthocyanin biosynthesis, anthocyanin contents, and metabolites have correlation in the red-flowered buckwheat Gan-Chao flowers. Our results may be helpful to understand anthocyanin biosynthesis in red-flowered buckwheat.


Subject(s)
Anthocyanins/biosynthesis , Fagopyrum/chemistry , Fagopyrum/metabolism , Gene Expression Regulation, Plant , Metabolomics , Plant Proteins/genetics , Anthocyanins/chemistry , Chromatography, High Pressure Liquid , Fagopyrum/classification , Fagopyrum/genetics , Mass Spectrometry , Molecular Structure , Plant Proteins/metabolism
8.
Food Chem ; 141(3): 2988-97, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23871050

ABSTRACT

Phenolic compounds from a wide collection of mungbean [Vigna radiata (L.) Wilczek] germplasm (56 varieties) were characterised to determine the diversity among these phytochemicals and to analyse the relationships among their contents. The profiles of 25 phenolic compounds identified from the grains were subjected to data-mining processes, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), Pearson's correlation analysis, and hierarchical clustering analysis (HCA). The IT212105 and IT104818 varieties separated from the others in the first two principal components of PCA. PLS-DA showed significant separation between extracts of mungbean originating from three countries: China, Japan, and Korea. HCA of these phytochemicals resulted in clusters derived from common or closely related biochemical pathways. Significant positive relationships were observed between coumaric acid and resveratrol (r=0.7195, p<0.0001). Catechin content was positively correlated with rutin (r=0.6291, p<0.0001). The IT104818 variety appears to be a good candidate for future breeding programs, as it contains high levels of phenolic compounds. These results demonstrate the use of metabolic profiling combined with chemometrics as a tool for assessing the quality of food.


Subject(s)
Fabaceae/chemistry , Phenols/analysis , Plant Extracts/analysis , China , Discriminant Analysis , Fabaceae/classification , Japan , Korea , Quality Control
9.
J Agric Food Chem ; 61(28): 6999-7007, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23782237

ABSTRACT

In the present study, carotenoids, anthocyanins, and phenolic acids of cauliflowers ( Brassica oleracea L. ssp. botrytis) with various colored florets (white, yellow, green, and purple) were characterized to determine their phytochemical diversity. Additionally, 48 metabolites comprising amino acids, organic acids, sugars, and sugar alcohols were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). Carotenoid content was considerably higher in green cauliflower; anthocyanins were detected only in purple cauliflower. Phenolic acids were higher in both green and purple cauliflower. Results of partial least-squares discriminant, Pearson correlation, and hierarchical clustering analyses showed that green cauliflower is distinct on the basis of the high levels of amino acids and clusters derived from common or closely related biochemical pathways. These results suggest that GC-TOFMS-based metabolite profiling, combined with chemometrics, is a useful tool for determining phenotypic variation and identifying metabolic networks connecting primary and secondary metabolism.


Subject(s)
Brassica/metabolism , Metabolome , Amino Acids/analysis , Anthocyanins/analysis , Brassica/classification , Carbohydrates/analysis , Carboxylic Acids/analysis , Carotenoids/analysis , Gas Chromatography-Mass Spectrometry , Hydroxybenzoates/analysis , Least-Squares Analysis , Pigmentation , Plant Extracts/chemistry , Secondary Metabolism , Species Specificity , Sugar Alcohols/analysis
10.
Biosci Biotechnol Biochem ; 76(12): 2188-94, 2012.
Article in English | MEDLINE | ID: mdl-23221690

ABSTRACT

Lycium chinense has been used as a traditional medicine for centuries in Asia because of its positive effects on health. However, its functional components have not been elucidated. This study determines the levels of health-promoting lipophilic compounds, including carotenoids, tocopherols, and phytosterol, and those of 42 hydrophilic metabolites, including sugars, organic acids, alcohols, amines, and amino acids, in L. chinense fruit from 11 cultivars. The metabolite profiles were subjected to a principal component analysis (PCA), Pearson correlation analysis, and hierarchical clustering analysis (HCA). PCA showed the Cheongdang (LM-3) cultivar to be distinct from the others. The correlation results for a total of 55 compounds revealed strong correlations between the metabolites that participated on closely related pathways. The Cheongdang cultivar appears to be most suited for functional food production because of its high carotenoid, tocopherol, and phytosterol levels. These results indicate the usefulness of metabolite profiling as a tool for assessing the quality of food.


Subject(s)
Food Quality , Fruit/metabolism , Lycium/metabolism , Metabolomics , Carotenoids/chemistry , Carotenoids/metabolism , Cluster Analysis , Hydrophobic and Hydrophilic Interactions , Phytosterols/chemistry , Phytosterols/metabolism , Principal Component Analysis , Quality Control , Tocopherols/chemistry , Tocopherols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL