Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Eur J Pharm Biopharm ; 139: 246-252, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30991089

ABSTRACT

Staphylococcus aureus is the major causative agent of skin and soft tissue infections, whose prevention and treatment have become more difficult due to the emergence of antibiotic-resistant strains. In this regard, the development of an effective treatment represents a challenge that can be overcome by delivering new antibiofilm agents with appropriate nanocarriers. In this study, a biosurfactant (BS) isolated from Lactobacillus gasseri BC9 and subsequently loaded in liposomes (LP), was evaluated for its ability to prevent the development and to eradicate the biofilm of different methicillin resistant S. aureus (MRSA) strains. BS from L. gasseri BC9 was not cytotoxic and was able to prevent formation and to eradicate the biofilm of different MRSA strains. BS loaded liposomes (BS-LP) presented a mean diameter (lower than 200 nm) suitable for topical administration and a low polydispersity index (lower than 0.2) that were maintained over time for up 28 days. Notably, BS-LP showed higher ability than free BS to inhibit S. aureus biofilm formation and eradication. BS-LP were loaded in lyophilized matrices able to quickly dissolve (dissolution time lower than 5 s) upon contact with exudate, thus allowing vesicle reconstitution. In conclusion, in this work, we demonstrated the antibiofilm activity of Lactobacillus-derived BS and BS-LP against clinically relevant MRSA strains. Furthermore, the affordable production of lyophilized matrices containing BS-LP for local prevention of cutaneous infections was established.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Biofilms/drug effects , Biological Products/administration & dosage , Lactobacillus gasseri , Methicillin-Resistant Staphylococcus aureus/physiology , Surface-Active Agents/administration & dosage , 3T3 Cells , Animals , Anti-Bacterial Agents/isolation & purification , Biological Products/isolation & purification , Drug Evaluation, Preclinical , Humans , Liposomes , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcal Skin Infections/drug therapy , Staphylococcal Skin Infections/microbiology , Surface-Active Agents/isolation & purification
2.
Front Immunol ; 8: 1474, 2017.
Article in English | MEDLINE | ID: mdl-29163538

ABSTRACT

BACKGROUND: Variability in probiotics manufacturing may affect their properties, with potential implications for their efficacy and safety. This is of particular concern with probiotic products destined for use in patients with serious medical conditions, including human immunodeficiency virus (HIV) infection. The purpose of the study was to carry out a series of experiments comparing the properties of the US-made probiotic formulation originally commercialized under the brand name VSL#3®, with those of the Italian-made formulation now commercialized under the same name. The US-made formulation has previously shown beneficial effects at the intestinal and neurological levels in HIV-infected subjects as well as in patients with inflammatory bowel diseases and hepatic encephalopathy. METHODS: Eleven subjects receiving combined antiretroviral therapy for HIV-1 were treated for 6 months with the US-made VSL#3 formulation. At baseline and 6 months, T-cells were analyzed for phenotype and activation markers, and fecal samples were analyzed for bifidobacteria, lactobacilli, and their metabolites. The fecal metabolome was assessed using 1H-NMR spectroscopy. Production of metabolites of interest by bacteria obtained from sachets of the two formulations was compared in vitro and their effects on a rat intestinal epithelial cell line (IEC-6) were assessed. Particular attention was paid to the metabolite 1,3-dihydroxyacetone (DHA). RESULTS: At 6 months, fecal samples showed a significant increase in the specific bacterial genera contained in the probiotic supplement. Immune activation was reduced as shown by a significant reduction in the percentage of CD4+CD38+HLA-DR+ T-cells at 6 months. Fecal concentrations of DHA decreased significantly. In vitro, significant differences in the production and metabolism of DHA were found between bacteria from the US-made and Italian-made formulations: the US-made formulation was able to metabolize DHA whereas the bacteria in the Italian-made formulation were producing DHA. DHA reduced the viability of Streptococcus thermophilus, reduced IEC-6 cell viability in a dose-dependent manner, and also led to a lower rate of repair to scratched IEC-6 cell monolayer. CONCLUSION: Our data, in conjunction with previously published findings, confirm that the new Italian-made formulation of VSL#3® is different from the previous US-made VSL#3 and therefore its efficacy and safety in HIV-infected subjects is still unproven.

SELECTION OF CITATIONS
SEARCH DETAIL