Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Biomol Struct Dyn ; 41(4): 1424-1436, 2023 03.
Article in English | MEDLINE | ID: mdl-34963406

ABSTRACT

The main objective of the present study is to isolate and characterise the novel bioactive molecule, 2-methoxy mucic acid (4) from Rhizophora apiculate Blume under the Rhizophoraceae family. In this study, the 2-methoxy mucic acid (4) was isolated for the first time from the methanolic extract of the leaves of R. apiculata. Anticancer activity of 2-methoxy mucic acid (4) was evaluated against HeLa and MDA-MB-231 cancer cell lines and they displayed promising activity with IC50 values of 22.88283 ± 0.72 µg/ml in HeLa and 2.91925 ± 0.52 µg/ml in the case of MDA-MB-231, respectively. Furthermore, the antioxidant property of 2-methoxy mucic acid (4) was found to be (IC50) 21.361 ± 0.41 µg/ml. Apart from in vitro studies, we also performed extensive in silico studies (molecular docking and molecular dynamics simulation) on four critical antiapoptotic Bcl-2 family members (Bcl-2, Bcl-w, Bcl-xL and Bcl-B) towards 2-methoxy mucic acid (4). The results revealed that this molecule showed higher binding affinity towards Bcl-B protein (ΔG = -5.8 kcal/mol) and the structural stability of this protein was significantly improved upon binding of this molecule. The present study affords vital insights into the importance of 2-methoxy mucic acid (4) from R. apiculata. Furthermore, it opens the therapeutic route for the discovery of anticancer drugs. Research HighlightsThis is a first report on a bioactive compound identified and characterised; a novel 2-methoxy mucic acid derived from methanolic crude extract from the leaves of R. apiculata from ANI.Estimated binding free energy of 2-methoxy mucic acid is found to be -5.8 kcal/mol to the anti-apoptotic Bcl-B protein.2-methoxy mucic acid showed both significant anti-cancer and anti-oxidant activity.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antioxidants , Rhizophoraceae , Antioxidants/pharmacology , Rhizophoraceae/chemistry , Rhizophoraceae/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Docking Simulation , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis Regulatory Proteins/metabolism , Methanol
2.
J Biomol Struct Dyn ; 40(16): 7218-7229, 2022 10.
Article in English | MEDLINE | ID: mdl-33682626

ABSTRACT

Mangrove plants are a great source of phytomedicines, since from the beginning of human civilization and the origin of traditional medicines. In the present study, ten different mangrove leaf methanolic extracts were screened for the type of phytochemicals followed by assessing antimicrobial, anti-oxidant and anti-cancer activities. The efficient methanolic crude extract of Rhizospora mucornata was further purified and characterized for the presence of the bioactive compound. Based on UV-visible spectroscopy, FTIR, NMR and HRMS analysis, the bioactive compound was 1,4-dihydroanthraquinone; also termed as Quinizarin. This identified compound was potential in exhibiting antimicrobial, antioxidant, and cytotoxic activity. Quinizarin inhibited the growth of Bacillus cereus and Klebsiella aerogenes with minimum inhibitory concentration (MIC) of 0.78 and 1.5 mg/ml. The DPPH free radical scavenging assay revealed the maximum activity of 99.8% at the concentration of 200 µg/ml with an IC50 value of 12.67 ± 0.41 µg/ml. Cytotoxic assay against HeLa (cervical) and MDA-MB231(breast) cancer cell lines revealed IC50 values to be 4.60 ± 0.26 and 3.89 ± 0.15 µg/ml. Together the results of molecular docking and molecular dynamics simulation studies explained that Quinizarin molecule showed stronger binding affinity (-6.2 kcal/mol) and significant structural stability towards anti-apoptotic Bcl-2 protein. Thus, the study put forth the promising role of the natural molecule - Quinizarin isolated from R. mucornata in the formulation of therapeutic drugs against bacterial infections and cancer. Communicated by Ramaswamy H. Sarma.


Subject(s)
Anti-Infective Agents , Rhizophoraceae , Anthraquinones , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Humans , Molecular Docking Simulation , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
3.
J Biomol Struct Dyn ; 40(4): 1490-1502, 2022 03.
Article in English | MEDLINE | ID: mdl-32996435

ABSTRACT

Gallic acid (PubChem CID: 370) and quercetin (PubChem CID: 5280343) are major phenolic compounds in many mangrove plants that have been related to health cure. In the present study, the active fractions namely gallic acid (1) and quercetin (2) were isolated from the methanolic extract of leaves of Ceriops tagal in a Tropical mangrove ecosystem of Andaman and Nicobar Island (ANI), India. The chemical structures were determined by spectroscopic analysis: Fourier-Transform Infrared spectroscopy (FT-IR), 1H, 13C Nuclear Magnetic Resonance (NMR) spectroscopy, and High-resolution mass spectrometry (HRMS). The anticancer activity of isolated compounds (1) and (2) were evaluated by in vitro assays against two human cancer cell lines namely, HeLa (Cervical) and MDA-MB231 (Breast) cancer cells revealed that IC50 values of gallic acid (HeLa: 4.179197 ± 0.45 µg/ml; MDA-MB231: 80.0427 ± 0.19 µg/ml at 24 h) and quercetin (HeLa: 99.914 ± 0.18 µg/ml; MDA-MB231: 18.288382 ± 0.12 µg/ml at 24 h), respectively. Antioxidant properties of gallic acid (1) and quercetin (2) are found to be IC50 value of 0.77 ± 0.41 µg/ml and 1.897 ± 0.81 µg/ml, respectively. Molecular docking results explained that gallic acid (1) and quercetin (2) showed estimated binding free energy (ΔG) of -5.4 and -6.9 kcal/mol towards drug target Bcl-B protein, respectively. The estimated inhibition constant (Ki) for these two molecules are 110 and 8.75 µM, respectively. The MD simulation additionally supported that quercetin molecule is significantly improved the structural stability of Bcl-B protein. The present study provides key insights about the importance of polyphenols, and thus leads to open the therapeutic route for anti-cancer drug discovery process.Communicated by Ramaswamy H. Sarma.


Subject(s)
Quercetin , Rhizophoraceae , Antioxidants/pharmacology , Ecosystem , Gallic Acid/pharmacology , Humans , Molecular Docking Simulation , Plant Extracts/chemistry , Quercetin/pharmacology , Rhizophoraceae/chemistry , Spectroscopy, Fourier Transform Infrared
4.
Article in English | MEDLINE | ID: mdl-31885647

ABSTRACT

Mangrove ecosystem has many potential species that are traditionally used by the coastal communities for their traditional cure for health ailments as evidenced by their extensive uses to treat hepatic disorders, diabetes, gastrointestinal disorders, anti-inflammation, anticancer, and skin diseases, etc. In recent times, the diabetes mellitus (DM), a serious physiological disorder all over the world, occur due to the relative or complete deficiency of insulin in the body, characterized by an abnormally high blood glucose level. India has a rich traditional knowledge on plant-based drug formulations that are protective and curative for many health ailments. In this context, we aimed to compile the works done on the antidiabetic activities of mangrove species from Indian coastal regions especially on Andaman and Nicobar Islands as well as some recent works reported from other countries. A total of 126 published articles and 31 mangrove species related pieces of information were gathered with reference to antidiabetic properties of mangroves. This review summarizes the chemical structures, molecular formula, molecular weight, and their biological activities with an aspiration that it might be helpful for the future bioprospecting industries who are interested in develop the natural drugs for DM.

SELECTION OF CITATIONS
SEARCH DETAIL