Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
PLoS One ; 17(5): e0263605, 2022.
Article in English | MEDLINE | ID: mdl-35544538

ABSTRACT

Poisonous plants cause tremendous economic losses to the livestock industry. These economic losses are deterioration in their health, decreased productivity, deformed offspring, and reduced longevity. The current study is the first comprehensive report on poisonous plants of Azad Jammu and Kashmir which systematically documents the phytotoxicological effect and mode of action in livestock. The information was gathered from 271 informants including 167 men and 104 women through semi-structured interviews and literature search through available databases. The data collected through interviews was analyzed with quantitative tools viz. the factor informant consensus and fidelity level. A total of 38 species of flowering plants belonging to 23 families and 38 genera were reported. Family Asteraceae (5 spp) was the most dominant, followed by Solanaceae (4 spp), Fabaceae (4 spp), Euphorbiaceae (4 spp) and Convolvulaceae (3 spp). Among all the species collected, herbs were the dominant life form (22 spp, 57.89%), trailed by shrubs (11 spp, 28.95%), and trees (5 spp, 13.16%). Whole plant toxicity was reported to be the highest (15 spp, 39.47%), followed by leaf toxicity (12 spp, 31.58%), seed toxicity (4 spp, 7.89%), fruit toxicity (3 spp, 10.53%), latex toxicity (2 spp, 5.26%), flowers toxicity (1 spp, 2.63%), and berries toxicity (1 spp, 2.63%). The most toxic route of administration was found oral (39 spp, 40.63%), followed by intraperitoneal (24 spp, 25%), and intravenous (21 spp, 21.88%). The most commonly affected organ was found liver (20.41%), followed by gastrointestinal tract (20.341%), CNS (16.33%), skin (14.29%), kidneys (12.24%), lungs (4.04%), reproductive organs (2.04%), spleen (1.75%), blood (1.75%), heart (1.75%), urinary tract (1.75%), and pancreas (1.75%). The maximum Fic value was found for dermatological disorders (0.91), followed by the endocrine system (0.90), gastrointestinal (0.82), neurology (0.77), nephrology (0.67), cardiovascular (0.67), urinary (0.67), respiratory (0.60), sexual (0.60) disorders. Senecio vulgaris, and Ageratum conyzoides were the most important plants with fidelity level (0.95) and (0.87). Nerium oleander, Lantana camara, Leucaena leucocephala, and Ricinus communis were the important poisonous plant with maximum fidelity level (100%). Ricinus communis with reported lowest LD50 (<20 mg/kg) was the top-ranked poisonous plant followed by Lantana camara and Justicia adhatoda (25-50 mg/kg), Nerium Oleander (157.37 mg/kg), and Datura innoxia (400 mg/kg). We found that knowledge about poisonous plants is less prevailing in the rural areas of Azad Kashmir compared to the knowledge about medicinal plants and poisonous nature of reported plants is due to production of toxic substances and presence of essential oils.


Subject(s)
Fabaceae , Lantana , Nerium , Plants, Medicinal , Ethnobotany , Ethnopharmacology , Female , Humans , Knowledge , Male , Medicine, Traditional , Phytotherapy , Plants, Toxic , Ricinus
2.
BMC Vet Res ; 16(1): 462, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33246474

ABSTRACT

BACKGROUND: High concentrate (HC) diet-induced oxidative stress causes gut epithelial damages associated with apoptosis. Selenium (Se) being an integral component of glutathione peroxidase (GSH-Px) plays an important role in antioxidant defense system. Therefore, increasing dietary Se level would alleviate HC diet-induced injuries in gut mucosa. The present study investigated eighteen cross-bred goats, randomly divided into three groups (n = 6/group) fed either low concentrate (LC, roughage: concentrate ratio 65:35), high concentrate (HC, 35:65) or HC plus Se (HC-SY) diets for 10 weeks. Se was supplemented at the dose rate of 0.5 mg Se kg- 1 diet in the form of selenium yeast. The background Se level in HC and LC diets were 0.15 and 0.035 mg.kg- 1 diet, respectively. The Se at the dose of 0.115 mg.kg- 1 diet was added in LC diet to make its concentration equivalent to HC diet and with the supplementation of 0.5 mg Se kg- 1, the goats in group HC-SY received total Se by 0.65 mg.kg- 1 diet. RESULTS: The molar concentrations of individual and total short chain fatty acids (TSCFA) significantly increased (P < 0.05) with simultaneous decrease in pH of colonic fluid in goats of HC and HC-SY groups compared with LC goats. HC diet induced loss of epithelial integrity, inflammation and loss of goblet cells in colonic mucosa associated with higher lipopolysaccharide (LPS) concentrations in colonic fluid whereas, the addition of SY in HC diet alleviated such damaging changes. Compared with LC, the HC diet elevated malondialdehyde (MDA) level with concurrent decrease in GSH-Px and superoxide dismutase (SOD) activities, while SY supplementation attenuated these changes and improved antioxidant status in colonic epithelium. Moreover, epithelial injury and oxidative stress in colon of HC goats were associated with increased apoptosis as evidenced by downregulation of bcl2 and upregulation of bax, caspases 3 and 8 mRNA expressions compared with LC goats. On contrary, addition of SY in HC (HC-SY) diet alleviated these changes by modulating expression of apoptotic genes in colonic epithelium. CONCLUSIONS: Our data suggest that supranutritional level of Se attenuates HC diet-induced oxidative stress and apoptosis and thereby minimizes the epithelial injury in colon of goats.


Subject(s)
Animal Feed/adverse effects , Goats/physiology , Selenium/administration & dosage , Animal Feed/analysis , Animals , Apoptosis/drug effects , Colon/drug effects , Diet/veterinary , Fatty Acids, Volatile/metabolism , Female , Intestinal Mucosa/drug effects , Malondialdehyde/metabolism , Oxidative Stress/drug effects
3.
AMB Express ; 8(1): 112, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29992450

ABSTRACT

The study was carried out to investigate the effect of dietary selenium (Se) and vitamin E (VE) supplementation on mRNA level of heat shock proteins, selenoproteins, and antioxidant enzyme activities in the breast meat of broilers under summer heat stress conditions. A total of 200 male broilers (Ross 308) of 1 day age were randomly separated into 4 groups in a complete randomized design and were given a basal diet (Control, 0.08 mg Se/kg diet) or basal diet supplemented with VE (250 mg/kg VE), sodium selenite (0.2 mg/kg Se), or Se + VE (0.2 mg/kg Se + 250 mg/kg VE) to investigate the expression of key antioxidant and heat shock protein (HSP) genes under high temperature stress. Dietary Se, VE and Se + VE significantly enhanced the activities and mRNA levels of catalase as well as superoxide dismutase (SOD) but decreased the mRNA levels of HSP70 and HSP90. Se alone or combined with VE increased the concentration of selenoprotein P and selenoproteins mRNA level and decreased the expression of HSP60. In addition, Se and Se + VE significantly enhanced the glutathione peroxidase (GPx) activity and the expression of GPx1 and GPx4 in breast muscle tissues. It is noteworthy that all the treatments significantly decreased malondialdehyde (MDA) level in the breast meat. Overall results showed that Se in combination with VE has maximal effects to mitigate heat stress. Based on given results it can be recommended that Se + VE are a suitable dietary supplement for broilers to ameliorate the negative effects of summer heat stress conditions.

4.
Biol Trace Elem Res ; 182(2): 328-338, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28702872

ABSTRACT

We investigated the effects of selenium-enriched probiotics (SP) on broiler meat quality under high ambient temperature and explore their underlying mechanisms. A total of 200 1-day-old male broiler chicks (Ross 308) were randomly allotted to four treatment groups, each with five replicates, in groups of ten birds. These birds were fed a corn-soybean basal diet (C), a basal diet plus probiotics supplementation (P), a basal diet plus Se supplementation in the form of sodium selenite (SS, 0.30 mg Se/kg), and a basal diet with the addition of selenium-enriched probiotics (SP, 0.30 mg Se/kg). The experiment lasted for 42 days. The birds were sacrificed by cervical dislocation, and the breast muscles were removed for further process. Our results showed that SP diet significantly increased (p < 0.05) the physical (pH, colors, water holding capacity, drip loss, shear force) and sensory characteristics of breast meat. All P, SS, and SP supplementation enhanced the antioxidant system by increasing (p < 0.05) the Se concentrations, glutathione (GSH) levels, activities of glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) whereas decreasing (p < 0.05) malondialdehyde (MDA) levels, with SP being higher than P and SS. Moreover, SP diet significantly upregulated (p < 0.05) the mRNA levels of glutathione peroxidase genes (GPx1, GPx4) while it downregulated heat stress biomarkers such as heat shock protein (HSP) 70 as compared to C, P, and SS diets. In conclusion, our findings suggest that SP may function as beneficial nutritive supplement that is capable of improving meat quality during the summer season.


Subject(s)
Dietary Supplements , Hot Temperature , Meat/analysis , Probiotics/administration & dosage , Selenium/administration & dosage , Animals , Animals, Newborn , Antioxidants/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Chickens , Gene Expression Regulation, Enzymologic/drug effects , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Male , Malondialdehyde/metabolism , Meat/standards , Probiotics/pharmacology , Selenium/pharmacology , Sodium Selenite/administration & dosage , Sodium Selenite/pharmacology , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL