Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Evol Biol ; 36(12): 1712-1730, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37702036

ABSTRACT

Most insects harbour influential, yet non-essential heritable microbes in their hemocoel. Communities of these symbionts exhibit low diversity. But their frequent multi-species nature raises intriguing questions on roles for symbiont-symbiont synergies in host adaptation, and on the stability of the symbiont communities, themselves. In this study, we build on knowledge of species-defined symbiont community structure across US populations of the pea aphid, Acyrthosiphon pisum. Through extensive symbiont genotyping, we show that pea aphids' microbiomes can be more precisely defined at the symbiont strain level, with strain variability shaping five out of nine previously reported co-infection trends. Field data provide a mixture of evidence for synergistic fitness effects and symbiont hitchhiking, revealing causes and consequences of these co-infection trends. To test whether within-host metabolic interactions predict common versus rare strain-defined communities, we leveraged the high relatedness of our dominant, community-defined symbiont strains vs. 12 pea aphid-derived Gammaproteobacteria with sequenced genomes. Genomic inference, using metabolic complementarity indices, revealed high potential for cooperation among one pair of symbionts-Serratia symbiotica and Rickettsiella viridis. Applying the expansion network algorithm, through additional use of pea aphid and obligate Buchnera symbiont genomes, Serratia and Rickettsiella emerged as the only symbiont community requiring both parties to expand holobiont metabolism. Through their joint expansion of the biotin biosynthesis pathway, these symbionts may span missing gaps, creating a multi-party mutualism within their nutrient-limited, phloem-feeding hosts. Recent, complementary gene inactivation, within the biotin pathways of Serratia and Rickettsiella, raises further questions on the origins of mutualisms and host-symbiont interdependencies.


Subject(s)
Aphids , Coinfection , Coxiellaceae , Gammaproteobacteria , Animals , Aphids/genetics , Aphids/microbiology , Pisum sativum , Biotin , Coxiellaceae/genetics , Symbiosis/genetics
2.
Mol Ecol ; 32(4): 920-935, 2023 02.
Article in English | MEDLINE | ID: mdl-36464913

ABSTRACT

Kissing bugs (Hempitera: Reduviidae) are obligately and exclusively blood feeding insects. Vertebrate blood is thought to provide insufficient B vitamins to insects, which rely on symbiotic relationships with bacteria that provision these nutrients. Kissing bugs harbour environmentally acquired bacteria in their gut lumen, without which they are unable to develop to adulthood. Rhodococcus rhodnii was initially identified as the sole symbiont of Rhodnius prolixus, but modern studies of the kissing bug microbiome suggest that R. rhodnii is not always present or abundant in wild-caught individuals. We asked whether R. rhodnii or other bacteria alone could function as symbionts of R. prolixus. We produced insects with no bacteria (axenic) or with known microbiomes (gnotobiotic). Gnotobiotic insects harbouring R. rhodnii alone developed faster, had higher survival, and laid more eggs than those harbouring other bacterial monocultures, including other described symbionts of kissing bugs. R. rhodnii grew to high titre in the guts of R. prolixus while other tested species were found at much lower abundance. Rhodococcus species tested had nearly identical B vitamin biosynthesis genes, and dietary supplementation of B vitamins had a relatively minor effect on development and survival of gnotobiotic R. prolixus. Our results indicate that R. prolixus have a higher fitness when harbouring R. rhodnii than other bacteria tested, that this may be due to R. rhodnii existing at higher titres and providing more B vitamins to the host, and that symbiont B vitamin synthesis is probably a necessary but not sufficient function of gut bacteria in kissing bugs.


Subject(s)
Rhodnius , Vitamin B Complex , Humans , Animals , Rhodnius/genetics , Rhodnius/microbiology , Reproduction
3.
J Microbiol Biotechnol ; 20(7): 1077-85, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20668400

ABSTRACT

With emphasis on thermal behavior in presence of different pH conditions and salts, the kinetic and thermodynamic parameters of purified polygalacturonase (PG) of E. carotovora subsp. carotovora (Ecc) BR1 were studied since characterization of an enzyme is significant in the context of burgeoning biotechnological applications. Thermodynamic parameters for polygalacturonic acid hydrolysis by purified PG were, deltaH* = 7.98 kJ/mol, deltaG* = 68.86 kJ/mol, deltaS*= -194.48 J/mol/K, deltaG(E-S) = -1.04 kJ/mol and deltaG(E-T) = -8.96 kJ/mol. Its turnover number (k(cat)) was 21/sec. Purified PG was stable in 20-50 degrees C temperature range and was deactivated at 60 degrees C and 70 degrees C. Thermodynamic parameters (deltaH*, deltaG*, deltaS*) for irreversible inactivation of PG at different temperatures (30-60 degrees C) were determined, where effectiveness of various salts and different pH (4-8) individually for thermal stability of PG were characterized. The efficacy of various salts for thermal stability of PG was in the following order: MgCl2 >BaCl2 >KCl >CaCl2 >NaCl. Present work projects biochemical, thermodynamics of substrate hydrolysis as well as thermal stabilization parameters of PG from Ecc.


Subject(s)
Pectins/metabolism , Pectobacterium carotovorum/enzymology , Polygalacturonase/isolation & purification , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Enzyme Stability , Hot Temperature , Isoelectric Focusing , Kinetics , Polygalacturonase/chemistry , Polygalacturonase/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL