Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Neuroendocrinol ; 32(3): e12839, 2020 03.
Article in English | MEDLINE | ID: mdl-32133707

ABSTRACT

Significant prior evidence indicates that centrally acting oxytocin robustly modulates stress responsiveness and anxiety-like behaviour, although the neural mechanisms behind these effects are not entirely understood. A plausible neural basis for oxytocin-mediated stress reduction is via inhibition of corticotrophin-releasing hormone (CRH) neurones in the paraventricular nucleus of the hypothalamus (PVN) that regulate activation of the hypothalamic-pituitary-adrenal axis. Previously, we have shown that, following s.c. injection of 2.0 mol L-1 NaCl, oxytocin synthesising neurones are activated in the rat PVN, an oxytocin receptor (Oxtr)-dependent inhibitory tone develops on a subset of parvocellular neurones and stress-mediated increases in plasma corticosterone levels are blunted. In the present study, we utilised transgenic male CRH-reporter mice to selectively target PVN CRH neurones for whole-cell recordings. These experiments reveal that acute salt loading produces tonic inhibition of PVN CRH neurones through a mechanism that is largely independent of synaptic activity. Further studies reveal that a subset of CRH neurones within the PVN synthesise mRNA for Oxtr(s). Salt induced Oxtr-dependent inhibitory tone was eliminated in individual PVN CRH neurones filled with GDP-ß-S. Additional electrophysiological studies suggest that reduced excitability of PVN CRH neurones in salt-loaded animals is associated with increased activation of inwardly rectifying potassium channels. Nevertheless, substantial effort to recapitulate the core effects of salt loading by activating Oxtr(s) with an exogenous agonist produced mixed results. Collectively, these results enhance our understanding of how oxytocin receptor-mediated signalling modulates the function of CRH neurones in the PVN.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Hypernatremia/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Oxytocin/metabolism , Animals , Hypothalamo-Hypophyseal System/metabolism , Male , Mice , Mice, Knockout , Mice, Transgenic , Pituitary-Adrenal System/metabolism , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism
2.
Endocrinology ; 154(7): 2457-67, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23653461

ABSTRACT

Anxiety disorders are the most common psychiatric illnesses and are associated with heightened stress responsiveness. The neuropeptide oxytocin (OT) has garnered significant attention for its potential as a treatment for anxiety disorders; however, the mechanism mediating its effects on stress responses and anxiety is not well understood. Here we used acute hypernatremia, a stimulus that elevates brain levels of OT, to discern the central oxytocinergic pathways mediating stress responsiveness and anxiety-like behavior. Rats were rendered hypernatremic by acute administration of 2.0 M NaCl and had increased plasma sodium concentration, plasma osmolality, and Fos induction in OT-containing neurons relative to 0.15 M NaCl-treated controls. Acute hypernatremia decreased restraint-induced elevations in corticosterone and created an inhibitory oxytocinergic tone on parvocellular neurosecretory neurons within the paraventricular nucleus of the hypothalamus. In contrast, evaluation of Fos immunohistochemistry determined that acute hypernatremia followed by restraint increased neuronal activation in brain regions receiving OT afferents that are also implicated in the expression of anxiety-like behavior. To determine whether these effects were predictive of altered anxiety-like behavior, rats were subjected to acute hypernatremia and then tested in the elevated plus maze. Relative to controls given 0.15 M NaCl, rats given 2.0 M NaCl spent more time in the open arms of the elevated plus maze, suggesting that acute hypernatremia is anxiolytic. Collectively the results suggest that acute elevations in plasma sodium concentration increase central levels of OT, which decreases anxiety by altering neuronal activity in hypothalamic and limbic nuclei.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety/metabolism , Hypernatremia/metabolism , Hypernatremia/physiopathology , Oxytocin/metabolism , Animals , Anxiety/etiology , Hypernatremia/chemically induced , Hypothalamus/drug effects , Hypothalamus/metabolism , Limbic System/drug effects , Limbic System/metabolism , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Restraint, Physical/physiology , Sodium Chloride/pharmacology , Supraoptic Nucleus
SELECTION OF CITATIONS
SEARCH DETAIL