Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Pharm ; 626: 122163, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36067920

ABSTRACT

Fascioliasis, a common parasitic infection observed in the pediatric patient population, is a leading cause of concern in countries with poor/unhealthy water resources. To treat this condition first line agent such as triclabendazole (TBZ) has been the choice therapy. However, there is a major hurdle in exploiting TBZ. Characterized with poor aqueous solubility (0.1 mg/L), its solubility has been the rate limiting factor, rendering requirement of large doses of TBZ. To address the same, the focus of the current study was to develop a self-nano emulsifying drug delivery system (TBZ-SNEDDS) for TBZ and developing dose customizable pediatric dispersible color-coded tablets. TBZ-SNEDDS were successfully formulated by using Kolliphor®EL, as a surfactant, a lipid phase of medium chain triglyceride and α-tocopherol in the ratio of (1:1), with dimethylacetamide (DMA) as a solvent. It was observed during in vitro release studies that there was a significant effect of fed conditions on the rate of TBZ release from the formulation. greater than 85 % TBZ was observed to release in fed conditions in comparison to fasted conditions. As currently TBZ is prescribed on a weight-based dosage regimen, it is imperative to develop a dose-customizable fast dissolving pediatric formulation. Hence, TBZ-SNEDDS could prove to be pivotal in helping countless children around the world in desperate conditions to get cheap yet effective therapy.


Subject(s)
Fascioliasis , Nanoparticles , Child , Humans , alpha-Tocopherol , Biological Availability , Drug Delivery Systems , Emulsions , Lipids , Particle Size , Solubility , Solvents , Surface-Active Agents , Tablets , Triclabendazole , Triglycerides
2.
Int J Pharm ; 597: 120329, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33540028

ABSTRACT

There has been a growing and evolving research to find a treatment or a prevention against coronavirus 2019 (COVID-19). Though mass vaccination will certainly help in reducing number of COVID-19 patients, an effective therapeutic measure must be available too. Intravenous remdesivir (RDV) was the first drug receiving Food and Drug Administration (FDA) approval for the treatment of COVID-19. However, in a pandemic like COVID-19, it is essential that drug formulations are readily available, affordable and convenient to administer to every patient around the globe. In this study, we have developed a Self-injectable extended release subcutaneous injection of Remdesivir (SelfExRem) for the treatment of COVID-19. As opposed to intravenous injection, extended release subcutaneous injection has the benefits of reducing face-to-face contact, minimizing hospitalization, reducing dosing frequency and reducing overall health care cost. SelfExRem was developed using a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), dissolved in a biocompatible vehicle. Six different batches were formulated using 2 different grades of low molecular weight PLGA and 3 different PLGA concentration. The force of injection of various polymeric solutions through 23-30-gauge needles were analyzed using a TA.XTplus texture analyzer. The time required for injection was evaluated both manually and by using an autoinjector. In vitro release of all the batches were carried out in 1% v/v tween 80 in phosphate buffer saline. The study indicated that SelfExRem developed with15% w/v PLGA(75:25) provided a steady release of drug for 48 h and may be a breakthrough approach for the treatment of COVID-19.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 Drug Treatment , COVID-19 , Delayed-Action Preparations/pharmacology , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/prevention & control , Drug Evaluation, Preclinical , Humans , Injections, Subcutaneous/methods , Prodrugs/pharmacology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL