Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Nutr ; 150(4): 918-928, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31909811

ABSTRACT

BACKGROUND: Diet may alter the configuration of gut microbiota, but the impact of prenatal and postnatal nutritional interventions on infant gut microbiota has not been investigated. OBJECTIVE: We evaluated whether providing lipid-based nutrient supplements (LNSs) to mother-infant dyads promotes a more diverse and mature infant gut microbiota, compared to maternal supplementation with multiple micronutrients (MMN) or iron and folic acid (IFA). METHODS: We enrolled 869 pregnant women in a randomized trial in Malawi. There were 3 study groups, with women receiving 1 MMN capsule daily during pregnancy and 6 mo postpartum, or 1 LNS sachet (20 g) daily during pregnancy and 6 mo postpartum, or 1 IFA capsule daily (during pregnancy) then a placebo daily (postpartum). Infants in the LNS group received LNS from 6 to 18 mo; infants in the other groups did not receive supplements. The infants' fecal microbiota were characterized by PCR amplification and sequencing of the bacterial 16S rRNA gene (variable region 4). The primary outcomes were microbiota α diversity and maturation [as microbiota-for-age z score (MAZ)]. Specific associations of taxa with intervention were established with indicator species analysis (ISA). RESULTS: Primary outcomes did not differ between IFA and MMN groups, so these groups were combined (IFA + MMN). Mean ± SD α diversity was higher in the LNS group at 18 mo for Shannon index [3.01 ± 0.57 (LNS) compared with 2.91 ± 0.60 (IFA + MMN), P = 0.032] and Pielou's evenness index [0.61 ± 0.08 (LNS) compared with 0.60 ± 0.09 (IFA + MMN), P = 0.043]; no significant differences were observed at 1, 6, 12, or 30 mo. MAZ and ß diversity did not differ at any age. We found 10 and 3 operational taxonomic units (OTUs) positively associated with LNS and IFA + MMN, respectively; however, these associations became nonsignificant following false discovery rate correction at 10%. CONCLUSIONS: Prenatal and postnatal LNS intake promoted infant gut microbiota diversity at 18 mo, after 12 mo of child supplementation, but did not alter microbiota maturation. This trial was registered at clinicaltrials.gov as NCT01239693.


Subject(s)
Child Development/drug effects , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Bacteria/drug effects , Bacteria/genetics , DNA/genetics , DNA, Bacterial/genetics , Feces , Female , Humans , Infant , Infant Nutritional Physiological Phenomena , Malawi , Maternal Nutritional Physiological Phenomena , Mothers , Postpartum Period , Pregnancy , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Rural Population , Seasons
2.
BMC Pediatr ; 18(1): 396, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30593271

ABSTRACT

BACKGROUND: Although poor complementary feeding is associated with poor child growth, nutrition interventions only have modest impact on child growth, due to high burden of infections. We aimed to assess the association of malaria with linear growth, hemoglobin, iron status, and development in children aged 6-18 months in a setting of high malaria and undernutrition prevalence. METHODS: Prospective cohort study, conducted in Mangochi district, Malawi. We enrolled six-months-old infants and collected weekly data for 'presumed' malaria, diarrhea, and acute respiratory infections (ARI) until age 18 months. Change in length-for-age z-scores (LAZ), stunting, hemoglobin, iron status, and development were assessed at age 18 months. We used ordinary least squares regression for continuous outcomes and modified Poisson regression for categorical outcomes. RESULTS: Of the 2723 children enrolled, 2016 (74.0%) had complete measurements. The mean (standard deviation) incidences of 'presumed' malaria, diarrhea, and ARI, respectively were: 1.4 (2.0), 4.6 (10.1), and 8.3 (5.0) episodes/child year. Prevalence of stunting increased from 27.4 to 41.5% from 6 to 18 months. 'Presumed' malaria incidence was associated with higher risk of stunting (risk ratio [RR] = 1.04, 95% confidence interval [CI] = 1.01 to 1.07, p = 0.023), anemia (RR = 1.02, 95%CI = 1.00 to 1.04, p = 0.014) and better socio-emotional scores (B = - 0.21, 95%CI = - 0.39 to - 0.03, p = 0.041), but not with change in LAZ, haemoglobin, iron status or other developmental outcomes. Diarrhea incidence was associated with change in LAZ (B = - 0.02; 95% CI = - 0.03 to - 0.01; p = 0.009), stunting (RR = 1.02; 95% CI = 1.01 to 1.03; p = 0.005), and slower motor development. ARI incidence was not associated with any outcome except for poorer socio-emotional scores. CONCLUSION: In this population of young children living in a malaria-endemic setting, with active surveillance and treatment, 'presumed' malaria is not associated with change in LAZ, hemoglobin, or iron status, but could be associated with stunting and anemia. Diarrhea was more consistently associated with growth than was malaria or ARI. The findings may be different in contexts where active malaria surveillance and treatment is not provided. TRIAL REGISTRATION: NCT00945698 (July 24, 2009) and NCT01239693 (November 11, 2010).


Subject(s)
Developmental Disabilities/epidemiology , Growth Disorders/epidemiology , Hemoglobins/analysis , Infant Nutrition Disorders/epidemiology , Iron/blood , Malaria/epidemiology , Anemia/epidemiology , Comorbidity , Developmental Disabilities/blood , Diarrhea/epidemiology , Growth Disorders/blood , Humans , Incidence , Infant , Infant Nutrition Disorders/blood , Prevalence , Prospective Studies , Respiratory Tract Infections/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL