Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nutrients ; 13(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652785

ABSTRACT

Cooked common beans (Phaseolus vulgaris) improve intestinal health in lean mice and attenuate intestinal dysbiosis and inflammation when consumed concurrent with obesity development. We determined the effects of a high-fat (HF) bean supplemented diet in mice with established obesity (induced by 12 weeks of HF diet (60% fat as kcal)) compared to obese mice consuming a HF or low-fat (LF) weight loss control diet. Obese C57BL/6 male mice remained consuming HF for eight weeks or were randomly switched from HF to an isocaloric HF with 15.7% cooked navy bean powder diet (HFàHFB) or LF (11% fat as kcal; HFàLF) (n = 12/group). HFàHFB improved the obese phenotype, including (i) fecal microbiome (increased Prevotella, Akkermansia muciniphila, and short-chain fatty acid levels), (ii) intestinal health (increased ZO-1, claudin-2, Muc2, Relmß, and Reg3γ expression), and (iii) reduced adipose tissue (AT) inflammatory proteins (NFκBp65, STAT3, IL-6, MCP-1, and MIP-1α), versus HF (p < 0.05). Conversely, HFàLF reduced body weight and circulating hormones (leptin, resistin, and PAI-1) versus HF and HFàHFB (p < 0.05); however, AT inflammation and intestinal health markers were not improved to the same degree as HFàHFB (p < 0.05). Despite remaining on a HF obesogenic diet, introducing beans in established obesity improved the obese phenotype (intestinal health and adipose inflammation) more substantially than weight loss alone.


Subject(s)
Diet, High-Fat/methods , Diet, Reducing/methods , Dietary Supplements , Obesity/diet therapy , Phaseolus , Adipose Tissue/metabolism , Animals , Biomarkers/metabolism , Body Weight/drug effects , Diet, High-Fat/adverse effects , Feces/microbiology , Gastrointestinal Microbiome , Inflammation , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Phenotype , Powders , Severity of Illness Index
2.
J Nutr Biochem ; 70: 91-104, 2019 08.
Article in English | MEDLINE | ID: mdl-31195365

ABSTRACT

Obesity is associated with impaired intestinal epithelial barrier function and an altered microbiota community structure, which contribute to host systemic inflammation and metabolic dysfunction. Fiber-rich common beans (Phaseolus vulgaris) promote intestinal health (microbiota and host epithelial barrier integrity) in lean mice. The objective was to assess the intestinal health promoting effects of navy bean supplementation during high-fat (HF)diet-induced obesity. Male C57BL/6 mice were fed either a high-fat (HF) diet (60% of kcal from fat) or an isocaloric HF diet supplemented with 15.7% (by weight) cooked navy bean powder (HF+B) for 12 weeks. Compared to HF, the HF+B diet altered the fecal microbiota community structure (16S rRNA gene sequencing), most notably increasing abundance of Akkermansia muciniphila (+19-fold), whose abundance typically decreases in obese humans and rodents. Additionally, HF+B fecal abundance of carbohydrate fermenting, short chain fatty acid (SCFA) producing Prevotella (+332-fold) and S24-7 (+1.6-fold) and fecal SCFA levels were increased. HF+B improved intestinal health and epithelial barrier integrity versus HF, evidenced by reduced serum fluorescein isothiocyanate (FITC)-dextran concentration in an in vivo gut permeability test, and increased intestinal mRNA expression of tight junction components (ZO-1, occludin), anti-microbial defenses (Reg3γ, IgA, Defα5, Defß2) and mucins (Muc2). Additionally, HF+B improved the systemic obese phenotype via reduced serum HOMA-IR and leptin:adiponectin ratio, and locally via attenuation of epididymal adipose tissue crown-like structure formation, adipocyte size, and inflammatory transcription factor (NFκBp65 and STAT3) activation. Therefore, navy bean supplementation improved obese intestinal health (microbiota and epithelial barrier integrity) and attenuated the severity of the obese phenotype.


Subject(s)
Diet, High-Fat , Inflammation/physiopathology , Intestinal Mucosa/physiopathology , Phaseolus , Adipokines/metabolism , Adipose Tissue/metabolism , Akkermansia , Animal Feed , Animals , Body Weight , Carbohydrate Metabolism , Dietary Fiber , Dietary Supplements , Epithelial Cells/metabolism , Epithelial Cells/pathology , Feces , Fermentation , Fluorescein-5-isothiocyanate , Gastrointestinal Microbiome , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Permeability , Phenotype , Prevotella , RNA, Ribosomal, 16S/metabolism , Verrucomicrobia
3.
J Nutr Biochem ; 28: 129-39, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26878790

ABSTRACT

Common beans are rich in phenolic compounds and nondigestible fermentable components, which may help alleviate intestinal diseases. We assessed the gut health priming effect of a 20% cranberry bean flour diet from two bean varieties with differing profiles of phenolic compounds [darkening (DC) and nondarkening (NDC) cranberry beans vs. basal diet control (BD)] on critical aspects of gut health in unchallenged mice, and during dextran sodium sulfate (DSS)-induced colitis (2% DSS wt/vol, 7 days). In unchallenged mice, NDC and DC increased (i) cecal short-chain fatty acids, (ii) colon crypt height, (iii) crypt goblet cell number and mucus content and (iv) Muc1, Klf4, Relmß and Reg3γ gene expression vs. BD, indicative of enhanced microbial activity and gut barrier function. Fecal 16S rRNA sequencing determined that beans reduced abundance of the Lactobacillaceae (Ruminococcus gnavus), Clostridiaceae (Clostridium perfringens), Peptococcaceae, Peptostreptococcaceae, Rikenellaceae and Pophyromonadaceae families, and increased abundance of S24-7 and Prevotellaceae. During colitis, beans reduced (i) disease severity and colonic histological damage, (ii) increased gene expression of barrier function promoting genes (Muc1-3, Relmß, and Reg3γ) and (iii) reduced colonic and circulating inflammatory cytokines (IL-1ß, IL-6, IFNγ and TNFα). Therefore, prior to disease induction, bean supplementation enhanced multiple concurrent gut health promoting parameters that translated into reduced colitis severity. Moreover, both bean diets exerted similar effects, indicating that differing phenolic content did not influence the endpoints assessed. These data demonstrate a proof-of-concept regarding the gut-priming potential of beans in colitis, which could be extended to mitigate the severity of other gut barrier-associated pathologies.


Subject(s)
Colitis/diet therapy , Diet , Inflammation/diet therapy , Microbiota , Phaseolus , Animals , Feces/microbiology , Inflammation Mediators/metabolism , Kruppel-Like Factor 4 , Mice , Mice, Inbred C57BL , Phylogeny , RNA, Messenger/genetics
4.
Genome ; 49(12): 1510-27, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17426766

ABSTRACT

Linolenic acid and seed lipoxygenases are associated with off flavours in soybean products. F5 recombinant inbred lines (RILs) from a cross between a low linolenic acid line (RG10) and a seed lipoxygenase-free line (OX948) were genotyped for simple sequence repeats (SSR), random amplified polymorphic DNA (RAPD), sequence-tagged sites (STS), and cleaved amplified polymorphic sequence (CAPS) markers and evaluated for seed and agronomic traits at 3 Ontario locations in 2 years. One hundred twenty markers covering 1247.5 cM were mapped to 18 linkage groups (LGs) in the soybean composite genetic map. Seed lipoxygenases L-1 and L-2 mapped as single major genes to the same location on LG G13-F. L-3 mapped to LG G11-E. This is the first report of a map position for L-3. A major quantitative trait locus (QTL) associated with reduced linolenic acid content was identified on LG G3-B2. QTLs for 12 additional seed and agronomic traits were detected. Linolenic acid content, linoleic acid content, yield, seed mass, protein content, and plant height QTL were present in at least 4 of 6 environments. Three to 8 QTLs per trait were detected that accounted for up to 78% of total variation. Linolenic acid and lipoxygenase loci did not overlap yield QTL, suggesting that it should be possible to develop high-yielding lines resistant to oxidative degradation by marker-assisted selection (MAS).


Subject(s)
Glycine max/genetics , Lipoxygenase/genetics , Quantitative Trait Loci , Seeds/genetics , alpha-Linolenic Acid/analysis , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , Fatty Acids/genetics , Flowering Tops/genetics , Minisatellite Repeats , Plant Oils/analysis , Plants, Genetically Modified , Seeds/growth & development , Glycine max/growth & development , alpha-Linolenic Acid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL