Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Chem Toxicol ; 179: 113955, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37482194

ABSTRACT

Tea (Camellia sinensis) is one of the most widely consumed non-alcoholic beverages globally, known for its rich composition of bioactive compounds that offer various health benefits to humans. However, the cultivation of tea plants often faces challenges due to their high vulnerability to pests and diseases, resulting in the heavy use of pesticides. Consequently, pesticide residues can be transferred to tea leaves, compromising their quality and safety and potentially posing risks to human health, including hormonal and reproductive disorders and cancer development. In light of these concerns, this review aims to: (I) present the maximum limits of pesticide residues established by different international regulatory agencies; (II) explore the characteristics of pesticides commonly employed in tea cultivation, encompassing aspects such as digestion, bioaccessibility, and the behavior of pesticide transfer; and (III) discuss the effectiveness of detection and removal methods for pesticides, the impacts of pesticides on both tea plants and human health and investigate emerging alternatives to replace these substances. By addressing these critical aspects, this review provides valuable insights into the management of pesticide residues in tea production, with the goal of ensuring the production of safe, high-quality tea while minimizing adverse effects on human health.


Subject(s)
Camellia sinensis , Pesticide Residues , Pesticides , Humans , Pesticide Residues/analysis , Tea/chemistry , Pesticides/analysis , Camellia sinensis/chemistry , Beverages
2.
Int J Biol Macromol ; 240: 124349, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37054855

ABSTRACT

Bacterial cellulose (BC) is a biomaterial produced by Gluconacetobacter xylinus, with wide applicability in different areas, such as biomedical, pharmaceutical, and food. BC production is usually carried out in a medium containing phenolic compounds (PC), such as teas, however, the purification process leads to the loss of such bioactive. Thus, the innovation of this research consists of the reincorporation of PC after the purification of the BC matrices through the biosorption process. In this context, the effects of the biosorption process in BC were evaluated to maximize the incorporation of phenolic compounds from a ternary mixture of hibiscus (Hibiscus sabdariffa), white tea (Camellia sinensis), and grape pomace (Vitis labrusca). The biosorbed membrane (BC-Bio) showed a great concentration of total phenolic compounds (TPC = 64.89 mg L-1) and high antioxidant capacity through different assays (FRAP: 130.7 mg L-1, DPPH: 83.4 mg L-1, ABTS: 158.6 mg L-1, TBARS: 234.2 mg L-1). The physical tests also indicated that the biosorbed membrane presented high water absorption capacity, thermal stability, low permeability to water vapor and improved mechanical properties compared to BC-control. These results indicated that the biosorption of phenolic compounds in BC efficiently increases bioactive content and improves physical membrane characteristics. Also, PC release in a buffered solution suggests that BC-Bio can be used as a polyphenol delivery system. Therefore, BC-Bio is a polymer with wide application in different industrial segments.


Subject(s)
Camellia sinensis , Vitis , Polyphenols , Phenols , Antioxidants/pharmacology , Vitis/chemistry , Camellia sinensis/chemistry , Cellulose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL