Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biosensors (Basel) ; 13(7)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37504133

ABSTRACT

A highly sensitive unlabeled electrochemical aptasensor based on hydroxylated black phosphorus/poly-L-lysine (hBP/PLL) composite is introduced herein for the detection of malathion. Poly-L-lysine (PLL) with adhesion and coating properties adhere to the surface of the nanosheets by noncovalent interactions with underlying hydroxylated black phosphorus nanosheets (hBP) to produce the hBP/PLL composite. The as-synthesized hBP/PLL composite bonded to Au nanoparticles (Au NPs) firmly by assembling and using them as a substrate for the aptamer with high specificity as a probe to fabricate the sensor. Under optimal conditions, the linear range of the electrochemical aptasensor was 0.1 pM~1 µM, and the detection limit was 2.805 fM. The electrochemical aptasensor has great selectivity, a low detection limit, and anti-interference, which has potential application prospects in the field of rapid trace detection of pesticide residues.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Metal Nanoparticles/chemistry , Malathion , Polylysine , Electrochemical Techniques , Gold/chemistry , Phosphorus , Aptamers, Nucleotide/chemistry , Limit of Detection
2.
Chin Med ; 15: 79, 2020.
Article in English | MEDLINE | ID: mdl-32765640

ABSTRACT

BACKGROUND: Glycine tabacina (Labill.) Benth, one of the traditional Chinese herbal medicines, has been used for treatment of nephritis, osteoporosis, rheumatism, and menopausal syndrome. The aim of this study was to illuminate the therapeutic effect and mechanism of Glycine tabacina aqueous extract (GATE) in the treatment of nephrotic syndrome (NS). METHODS: UHPLC-DAD-MS/MS was used to analyze the chemical profile of GATE. Adriamycin (ADR)-induced NS mouse model and network pharmacology methods were conducted to explore the protective effect and mechanism of GATE on NS treatment. RESULTS: GATE administration significantly ameliorated symptoms of proteinuria and hyperlipidemia in NS mice, as evidenced by reduced excretion of urine protein and albumin, and decreased plasma levels of total cholesterol and triglyceride. Decreased blood urea nitrogen (BUN) and creatinine levels in NS mice suggested that GATE could prevent renal function decline caused by ADR. GATE treatment also inhibited ADR-induced pathological lesions of renal tissues as indicated by periodic acid Schiff staining. Six flavonoids of GATE were identified by using UHPLC-DAD-MS/MS. Network pharmacology analysis indicated that the protection of GATE in treating NS might be associated with the regulation of oxidative stress and inflammation. In addition, the in vivo experiment validated that treatment with GATE markedly decreased reactive oxygen species production, malonaldehyde level, and increased superoxide dismutase activity both in plasma and renal tissues. TNF-α level in plasma and protein expression in kidney were significantly decreased in GATE treatment groups. CONCLUSIONS: Combination of network pharmacology analysis and experimental verification revealed that GATE exerts anti-NS effect possibly through modulating oxidative stress and inflammation, suggesting the potential application of GATE or its derivatives in the prevention and treatment of NS and other related kidney diseases.

3.
Food Chem Toxicol ; 110: 418-424, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28899773

ABSTRACT

Raspberry seed is a massive byproduct of raspberry juice and wine but usually discarded. The present study employed a microwave-assisted method for extraction of raspberry seed oil (RSO). The results revealed that omega-6 fatty acids (linoleic acid and γ-linolenic acid) were the major constituents in RSO. Cellular antioxidant enzyme activity such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were investigated in HepG2 cells treated with RSO. Induction of the synthesis of several antioxidants in H2O2-exposed HepG2 cells was found. RSO increased the enzyme activity of SOD, CAT, and GPx in H2O2-exposed HepG2. Furthermore, RSO inhibited the phosphorylation of upstream mitogen-activated protein kinases (MAPK) such as c-Jun N-terminal kinase (c-JNK) and extracellular signal-regulated kinase (ERK). Taken together, the possible mechanisms to increase antioxidant enzyme activities in HepG2 may through the suppression of ERK and JNK phosphorylation. Raspberry seed oil exhibited good effects on the activities of the intracellular antioxidant enzymes and seems to protect the liver from oxidative stress through the inhibition of MAPKs.


Subject(s)
Liver/drug effects , Plant Oils/chemistry , Plant Oils/pharmacology , Protective Agents/chemistry , Rubus/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Catalase/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Hep G2 Cells , Humans , Hydrogen Peroxide/toxicity , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Liver/metabolism , Oxidative Stress/drug effects , Protective Agents/pharmacology , Reactive Oxygen Species/metabolism , Seeds/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL