Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Physiol Int ; 111(1): 63-79, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38421391

ABSTRACT

Poor sleep increases pain, at least in part, by disrupting endogenous pain modulation. However, the efficacy of endogenous analgesia in sleep-deprived subjects has never been tested. To assess this issue, we chose three different ways of triggering endogenous analgesia: (1) acupuncture, (2) acute stress, and (3) noxious stimulation, and compared their ability to decrease the pronociceptive effect induced by REM-SD (Rapid Eye Movement Sleep Deprivation) with that to decrease inflammatory hyperalgesia in the classical carrageenan model. First, we tested the ability of REM-SD to worsen carrageenan-induced hyperalgesia: A low dose of carrageenan (30 µg) in sleep-deprived Wistar rats resulted in a potentiated hyperalgesic effect that was more intense and longer-lasting than that induced by a higher standard dose of carrageenan (100 µg) or by REM-SD alone. Then, we found that (1) acupuncture, performed at ST36, completely reversed the pronociceptive effect induced by REM-SD or by carrageenan; (2) immobilization stress completely reversed the pronociceptive effect of REM-SD, while transiently inhibited carrageenan-induced hyperalgesia; (3) noxious stimulation of the forepaw by capsaicin also reversed the pronociceptive effect of REM-SD and persistently increased the nociceptive threshold above the baseline in carrageenan-treated animals. Therefore, acupuncture, stress, or noxious stimulation reversed the pronociceptive effect of REM-SD, while each intervention affected carrageenan-induced hyperalgesia differently. This study has shown that while sleep loss may disrupt endogenous pain modulation mechanisms, it does not prevent the activation of these mechanisms to induce analgesia in sleep-deprived individuals.


Subject(s)
Acupuncture Therapy , Analgesia , Humans , Rats , Animals , Hyperalgesia/chemically induced , Hyperalgesia/therapy , Sleep, REM/physiology , Carrageenan , Rats, Wistar , Pain
SELECTION OF CITATIONS
SEARCH DETAIL