Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Nat Prod Res ; : 1-7, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37948163

ABSTRACT

Centaurium erythraea Rafn is employed in Algerian traditional medicine for treating pain. The analgesic activity of the ethanolic extract (EE) from the flowering aerial parts of this plant was examined, and molecular docking of the main bioactive compound was performed. The EE, characterised by the iridoid swertiamarin, was administered to Wistar albino rats in pain models. Peripheral analgesic activity was evaluated using the acetic acid-induced writhing test, and a hot plate test was performed for central antinociceptive activity evaluation. Treatment with EE significantly decreased rats' writhing induced by acetic acid suggesting peripheral analgesic activity. Furthermore, the elevation of mean basal reaction time in the hot plate method indicated central analgesic activity. Molecular docking studies showed good docking energy with acceptable binding interactions of swertiamarin with cyclooxygenase-2 protein. This supports the analgesic activity of C. erythraea EE, justifying the traditional use of the plant as an analgesic herbal remedy.

2.
Molecules ; 28(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764255

ABSTRACT

Industrial hemp (Cannabis sativa L.), due to its bioactive compounds (terpenes and cannabinoids), has gained increasing interest in different fields, including for medical purposes. The evaluation of the safety profile of hemp essential oil (EO) and its encapsulated form (nanoemulsion, NE) is a relevant aspect for potential therapeutic applications. This study aimed to evaluate the toxicological effect of hemp EOs and NEs from cultivars Carmagnola CS and Uso 31 on three cell lines selected as models for topical and inhalant administration, by evaluating the cytotoxicity and the cytokine expression profiles. Results show that EOs and their NEs have comparable cytotoxicity, if considering the quantity of EO present in the NE. Moreover, cells treated with EOs and NEs showed, in most of the cases, lower levels of proinflammatory cytokines compared to Etoposide used as a positive control, and the basal level of inflammatory cytokines was not altered, suggesting a safety profile of hemp EOs and their NEs to support their use for medical applications.


Subject(s)
Cannabinoids , Cannabis , Oils, Volatile , Oils, Volatile/pharmacology , Cannabinoids/pharmacology , Terpenes
3.
Antibiotics (Basel) ; 10(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34943662

ABSTRACT

Plants are considered to be an excellent source of new compounds with antibiotic activity. Carlina acaulis L. is a medicinal plant whose essential oil (EO) is mainly characterized by the polyacetylene carlina oxide, which has antimicrobial properties. The aim of this study was to evaluate the antimicrobial and antifungal activities of C. acaulis EO, carlina oxide, and nanoemulsion (NE) containing the EO. The EO was obtained through plant roots hydrodistillation, and carlina oxide was purified from it through silica gel column chromatography. The NE containing C. acaulis EO was prepared with the high-pressure homogenization method, and the minimum inhibitory concentration (MIC) was determined against several bacterial and fungal strains for all the C. acaulis-derived products. The latter resulted active versus all the screened Gram-positive bacterial strains and also on all the fungal strains with low MIC values. For yeast, the EO and carlina oxide showed good MIC values. The EO-NE demonstrated a better activity than the pure EO on all the tested bacterial and fungal strains. The results suggest that C. acaulis-derived products could be potential candidates for the development of natural antibacterial and antifungal agents.

4.
Molecules ; 26(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202706

ABSTRACT

Espresso coffee (EC) is a common coffee preparation technique that nowadays is broadly widespread all over the globe. Its popularity is in part attributed to the intense aroma and pleasant flavor. Many researchers have studied and reviewed the aroma of the coffee, but there is a lack of specific review focused on EC aroma profile even if it is intensively investigated. Thus, the objective of the current review was to summarize the aroma profile of EC and how different preparation variables can affect EC flavor. Moreover, a collection of diverse analytical procedures for volatile analysis was also reported. The findings of this survey showed that the volatile fraction of EC is extremely complex, but just some compounds are responsible for the characteristic aroma of the coffee, such as some aldehyde, ketones, furanones, furans, sulfur compounds, pyrazines, etc. In addition, during preparation, some variables, e.g., temperature and pressure of water, granulometry of the coffee particle, and brew ratio, can also modify the aroma profile of this beverage, and therefore its quality. A better understanding of the aroma fraction of EC and how the preparation variables should be adjusted according to desired EC would assist coffee workers in obtaining a higher quality product.


Subject(s)
Coffee/chemistry , Hot Temperature , Odorants/analysis , Volatile Organic Compounds/analysis
5.
Nat Prod Res ; 35(22): 4746-4752, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31965826

ABSTRACT

Nowadays, only a little part of essential oils produced at an industrial level is employed for insecticidal formulations, while thousand tons are used for perfumery purposes. This research explores the insecticidal potential of two essential oils largely used in perfumery, ylang ylang (Cananga odorata) and frankincense (Boswellia spp.) on three insects of economic importance, Culex quinquefasciatus, Musca domestica and Spodoptera littoralis, comparing their performances with a commercial pyrethrum extract. GC-MS showed that the ylang ylang and frankincense essential oils were mainly composed of α-thujene (73.8%), benzyl salicylate (24.4%) and linalool (21.9%), respectively. Ylang-ylang and frankincense essential oils showed significant insecticidal activity against C. quinquefasciatus larvae (LC50 < 70 ppm) and M. domestica adults (LD50 < 80 µg/female), respectively, while no relevant toxicity was detected on S. littoralis. As highly available from the fragrance industry, these essential oils may be further considered as promising ingredients to be used in botanical formulations against mosquitoes and houseflies.


Subject(s)
Boswellia , Cananga , Frankincense , Insecticides , Oils, Volatile , Animals , Larva , Oils, Volatile/pharmacology , Plant Oils
6.
Molecules ; 25(14)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660058

ABSTRACT

The rationale inspiring the discovery of lead compounds for the treatment of human parasitic protozoan diseases from natural sources is the well-established use of medicinal plants in various systems of traditional medicine. On this basis, we decided to select an overlooked medicinal plant growing in central Italy, Marrubium incanum Desr. (Lamiaceae), which has been used as a traditional remedy against protozoan diseases, and to investigate its potential against Human African trypanosomiasis (HAT). For this purpose, we assayed three extracts of different polarities obtained from the aerial parts of M. incanum-namely, water (MarrInc-H2O), ethanol (MarrInc-EtOH) and dichloromethane (MarrInc-CH2Cl2)-against Trypanosoma brucei (TC221), with the aim to discover lead compounds for the development of antitrypanosomal drugs. Their selectivity index (SI) was determined on mammalian cells (BALB/3T3 mouse fibroblasts) as a counter-screen for toxicity. The preliminary screening selected the MarrInc-CH2Cl2 extract as the most promising candidate against HAT, showing an IC50 value of 28 µg/mL. On this basis, column chromatography coupled with the NMR spectroscopy of a MarrInc-CH2Cl2 extract led to the isolation and identification of five compounds i.e. 1-α-linolenoyl-2-palmitoyl-3-stearoyl-sn- glycerol (1), 1-linoleoyl-2-palmitoyl-3-stearoyl-sn-glycerol (2), stigmasterol (3), palmitic acid (4), and salvigenin (5). Notably, compounds 3 and 5 were tested on T. brucei, with the latter being five-fold more active than the MarrInc-CH2Cl2 extract (IC50 = 5.41 ± 0.85 and 28 ± 1.4 µg/mL, respectively). Furthermore, the SI for salvigenin was >18.5, showing a preferential effect on target cells compared with the dichloromethane extract (>3.6). Conversely, stigmasterol was found to be inactive. To complete the work, also the more polar MarrInc-EtOH extract was analyzed, giving evidence for the presence of 2″-O-allopyranosyl-cosmosiin (6), verbascoside (7), and samioside (8). Our findings shed light on the phytochemistry of this overlooked species and its antiprotozoal potential, providing evidence for the promising role of flavonoids such as salvigenin for the treatment of protozoal diseases.


Subject(s)
Marrubium/chemistry , Plant Extracts/chemistry , Trypanocidal Agents , Trypanosoma brucei brucei/growth & development , 3T3 Cells , Animals , Humans , Mice , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification , Trypanocidal Agents/pharmacology
7.
Food Chem Toxicol ; 138: 111207, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32074492

ABSTRACT

In this work, the essential oils (EOs) from Litchi chinensis, Clausena anisata, Heracleum sphondylium, Pimpinella anisum, Lippia alba, Crithmum maritimum and Syzygium aromaticum were tested for their contact toxicity against the poultry red mite, Dermanyssus gallinae, a deleterious ectoparasite of aviary systems. In addition, in order to give insights on their mode of action and effectiveness, the vapor phase and residual toxicity tests were also performed. Results showed that amongst all the tested EOs, that of S. aromaticum demonstrated the highest contact toxicity, with a LC50 value of 8.9 µg/mL, followed by C. maritimum and L. chinensis EOs, with LC50 values of 23.7 and 24.7 µg/mL, respectively. L. chinensis and C. anisata EOs showed higher vapor toxicity than the other EOs. L. chinensis and S. aromaticum EOs showed promising toxic effects up to 4 days post-application. Taken together, these results highlighted L. chinensis and S. aromaticum as two promising sources of biopesticides, able to cause severe contact, vapor and residual toxicity in the poultry red mites. Given the wide plant cultivation and uses in foodstuffs, cosmetics, flavour and fragrances, these EOs may be considered cheap and ready-to-use products as valid, eco-friendly alternatives to pesticides currently used in the aviary systems.


Subject(s)
Acaricides/toxicity , Mites/drug effects , Oils, Volatile/pharmacology , Poultry Diseases/prevention & control , Poultry/parasitology , Animals , Cameroon , Clausena , Distillation , Food Safety , Italy , Litchi/chemistry , Plant Extracts/pharmacology , Plant Oils/pharmacology , Syzygium/chemistry
8.
Food Chem Toxicol ; 138: 111184, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32061727

ABSTRACT

Marsh rosemary (Ledum palustre, Ericaceae) has been widely used in the traditional medicine of various regions worldwide, and as insect repellent. Little is known on its essential oil insecticidal potential. This study explored the insecticidal effects of the essential oil obtained from L. palustre growing in Poland on selected insect pests and vectors. GC-MS analysis evidenced an uncommon chemotype characterized by ascaridole (35.3% as sum of cis-ascaridole and isoascaridole) and p-cymene (25.5%). The essential oil was effective against Culex quinquefasciatus, Spodoptera littoralis and Musca domestica, showing LC50/LD50 of 66.6 mg L-1, 117.2 µg larva-1 and 61.4 µg adult-1, respectively. It was not toxic to non-target Eisenia fetida earthworms and moderately toxic to Daphnia magna microcrustaceans, over the positive control α-cypermethrin. The essential oil cytotoxicity on human keratinocytes and fibroblasts showed high IC50 values (71.3 and 84.4 µg mL-1, respectively). Comet assay data highlighted no DNA damages. Based on our findings, this essential oil, characterized by the ascaridole/p-cymene chemotype, could be a candidate for the formulation of botanical insecticides; large-scale production of green insecticides by this rare species may be assured by ex situ cultivation and biotechnological techniques.


Subject(s)
Cyclohexane Monoterpenes/pharmacology , Insecticides/pharmacology , Oils, Volatile/pharmacology , Peroxides/pharmacology , Rosmarinus/chemistry , Animals , Cell Line , Comet Assay , Culex/drug effects , Culicidae/drug effects , Cyclohexane Monoterpenes/analysis , Cymenes/analysis , Cymenes/pharmacology , Daphnia/drug effects , Houseflies/drug effects , Humans , Insect Repellents/analysis , Insect Repellents/pharmacology , Insecticides/analysis , Keratinocytes/cytology , Keratinocytes/drug effects , Larva/drug effects , Mosquito Vectors/drug effects , Moths/drug effects , Oils, Volatile/analysis , Oligochaeta/drug effects , Peroxides/analysis , Poland , Pyrethrins/analysis , Pyrethrins/pharmacology , Spodoptera/drug effects
9.
Food Chem Toxicol ; 136: 111037, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31816346

ABSTRACT

Carlina acaulis (Compositae) is traditionally used for food and medicinal purposes in central and southern Europe. Its root essential oil (EO), mainly composed by carlina oxide, is included in the BELFRIT botanical list of food supplements. It is also recognized as a potent mosquito larvicide. It is matter of concern whether this EO could be endowed with intrinsic toxicity to limit its use on a food level. Focusing on the insecticidal activity of this EO, we investigated the acute toxicity and sublethal effects on Musca domestica. In topical assays, the EO was extremely effective (LD50 = 2.74 and 5.96 µg fly-1, on males and females, respectively). The exposure to a sublethal dose (LD30) led to significant reductions of female longevity (LT50 = 6.7-9.0 days vs. control LT50 = 12.9-13.7 days). Treated females laid 2.5 times fewer eggs over control ones. F1 vitality decreased: F1 larvae and pupae showed high mortality, 2-4-fold higher over the control. The EO also showed high cytotoxicity on normal human fibroblasts (NHF-A12, IC50 = 9.4-14.2 µg mL-1 after 6-48 h). Overall, our findings support the employ of this EO for developing botanical insecticides. At the same time, they encourage food safety authorities to perform a full toxicological assessment for possible restrictions at food level.


Subject(s)
Houseflies/drug effects , Insecticides/toxicity , Oils, Volatile/toxicity , Plant Oils/toxicity , Animals , Cell Line , Female , Humans , Larva/drug effects , Magnoliopsida/chemistry , Male , Plant Roots/chemistry , Pupa/drug effects
10.
Molecules ; 24(14)2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31311079

ABSTRACT

Developing effective and eco-friendly antiparasitic drugs and insecticides is an issue of high importance nowadays. In this study, we evaluated the anthelminthic and insecticidal potential of the leaf essential oil obtained from Origanum syriacum against the L3 larvae of the parasitic nematode Anisakis simplex and larvae and adults of the mosquito Culex quinquefasciatus. Tests on A. simplex were performed by standard larvicidal and penetration assays, while mosquito toxicity was assessed relying on larvicidal, tarsal contact, and fumigation tests. To shed light on the possible mode of action, we analyzed the oil impact as acetylcholinesterase (AChE) inhibitor. This oil was particularly active on L3 larvae of A. simplex, showing a LC50 of 0.087 and 0.067 mg mL-1 after 24 and 48 h treatment, respectively. O. syriacum essential oil was highly effective on both larvae and adults of C. quinquefasciatus, showing LC50 values of 32.4 mg L-1 and 28.1 µg cm-2, respectively. Its main constituent, carvacrol, achieved larvicidal LC50(90) of 29.5 and 39.2 mg L-1, while contact toxicity assays on adults had an LC50(90) of 25.5 and 35.8 µg cm-2, respectively. In fumigation assays, the LC50 was 12.1 µL L-1 after 1 h and decreased to 1.3 µL L-1 in 24 h of exposure. Similarly, the fumigation LC50 of carvacrol was 8.2 µL L-1 after 1 h of exposure, strongly decreasing to 0.8 µL L-1 after 24 h of exposure. These results support the folk usage of Lebanese oregano as an antiparasitic agent, providing new insights about its utilization for developing new effective and eco-friendly nematocidal and insecticidal products.


Subject(s)
Anisakis/drug effects , Cholinesterase Inhibitors/pharmacology , Culex/drug effects , Oils, Volatile/pharmacology , Origanum/chemistry , Animals , Cholinesterase Inhibitors/chemistry , Cymenes/pharmacology , Larva/drug effects , Mosquito Vectors/drug effects , Oils, Volatile/chemistry , Plant Leaves/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology
11.
Molecules ; 24(5)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30832296

ABSTRACT

Every year Chile exports about 2000 tons of boldo folium (Peumus boldus), which is used around the world as a traditional herbal medicinal product (THMP), mostly to relieve gastrointestinal disorders. This biomass may be a resource for the agrochemical industry to manufacture botanical insecticides. In this regard, the insecticidal potential of boldo has been poorly investigated. In the present work, hydrodistillation of a commercial boldo folium gave 1.5% (w/w) of a yellowish essential oil (boldo essential oil, BEO) containing 1,8-cineole (20.7%), p-cymene (18.5%), limonene (9.1%), ascaridole (9.1%) and ß-phellandrene (6.4%) as the main constituents, as determined by gas chromatography-mass spectrometry (GC-MS). NMR analysis allowed us to determine that ascaridole was mainly represented by the cis-isomer. BEO was toxic to larvae of the filariasis vector Culex quinquefasciatus and adults of the housefly Musca domestica, showing LC50/LD50 values of 67.9 mg·L-1 and 98.5 µg·adult-1, respectively. On the other hand, lower insecticidal activity was observed against larvae of the moth pest Spodoptera littoralis (LD50 of 268.9 µg·larva-1). It is worth noting that, when tested at LC90 concentration, BEO was significantly less toxic to aquatic microcrustacean Daphnia magna than the conventional insecticide α-cypermethrin. Finally, in the attempt to explore the BEO mode of action, we tested it for acetylcholinesterase (AChE) inhibitory properties using the Ellman method, obtaining negligible effects (IC50 = 0.45 mg·mL-1). Taken together, these results gave new insights into the potential of BEO as a future ingredient of botanical insecticides.


Subject(s)
Daphnia/drug effects , Insecticides/pharmacology , Oils, Volatile/pharmacology , Peumus/chemistry , Animals , Culex/drug effects , Cyclohexane Monoterpenes , Cyclohexenes/chemistry , Cymenes , Gas Chromatography-Mass Spectrometry , Houseflies/drug effects , Humans , Insecticides/chemistry , Larva/drug effects , Lethal Dose 50 , Monoterpenes/chemistry , Mosquito Vectors/drug effects , Moths/drug effects , Oils, Volatile/chemistry , Peroxides/chemistry , Pyrethrins/chemistry
12.
Ecotoxicol Environ Saf ; 156: 154-165, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-29549739

ABSTRACT

The Apiaceae family encompasses aromatic plants of economic importance employed in foodstuffs, beverages, perfumery, pharmaceuticals and cosmetics. Apiaceae are rich sources of essential oils because of the wealth of secretory structures (ducts and vittae) they are endowed with. The Apiaceae essential oils are available on an industrial level because of the wide cultivation and disposability of the bulky material from which they are extracted as well as their relatively cheap price. In the fight against protozoal infections, essential oils may represent new therapeutic options. In the present work, we focused on a panel of nine Apiaceae species (Siler montanum, Sison amomum, Echinophora spinosa, Kundmannia sicula, Crithmum maritimum, Helosciadium nodiflorum, Pimpinella anisum, Heracleum sphondylium and Trachyspermum ammi) and their essential oils as a model for the identification of trypanocidal compounds to be used as alternative/integrative therapies in the treatment of Human African trypanosomiasis (HAT) and as starting material for drug design. The evaluation of inhibitory effects of the Apiaceae essential oils against Trypanosoma brucei showed that some of them (E. spinosa, S. amomum, C. maritimum and H. nodiflorum) were active, with EC50 in the range 2.7-10.7 µg/mL. Most of these oils were selective against T. brucei, except the one from C. maritimum that was highly selective against the BALB/3T3 mammalian cells. Testing nine characteristic individual components (α-pinene, sabinene, α-phellandrene, p-cymene, limonene, ß-ocimene, γ-terpinene, terpinolene, and myristicin) of these oils, we showed that some of them had much higher selectivity than the oils themselves. Terpinolene was particularly active with an EC50 value of 0.035 µg/mL (0.26 µM) and a selectivity index (SI) of 180. Four other compounds with EC50 in the range 1.0-6.0 µg/mL (7.4-44 µM) had also good SI: α-pinene (>100), ß-ocimene (>91), limonene (>18) and sabinene (>17). In conclusion, these results highlight that the essential oils from the Apiaceae family are a reservoir of substances to be used as leading compounds for the development of natural drugs for the treatment of HAT.


Subject(s)
Apiaceae/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Trypanosoma brucei brucei/drug effects , 3T3 Cells , Acyclic Monoterpenes , Alkenes/pharmacology , Allylbenzene Derivatives , Animals , Benzyl Compounds/pharmacology , Bicyclic Monoterpenes , Cyclohexane Monoterpenes , Cyclohexenes/pharmacology , Cymenes , Dioxolanes/pharmacology , Inhibitory Concentration 50 , Limonene , Mice , Monoterpenes/pharmacology , Pyrogallol/analogs & derivatives , Pyrogallol/pharmacology , Terpenes/pharmacology , Trypanosomiasis/drug therapy
13.
Fitoterapia ; 124: 145-151, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29146170

ABSTRACT

Tithonia diversifolia (Asteraceae), is used as traditional medicine in tropical countries for the treatment of various diseases, including malaria. Although numerous studies have assessed the antimalarial properties, nothing is known about the effect of T. diversifolia extracts on trypanosomiasis. In this study extracts of T. diversifolia aerial parts were evaluated for their bioactivity against Trypanosoma brucei. The activity was studied against bloodstream forms of T. brucei (TC221), as well as against mammalian cells (BALB/3T3 mouse fibroblasts), as a counter-screen for toxicity. Both methanolic and aqueous extracts showed significant effects with IC50 values of 1.1 and 2.2µg/mL against T. brucei (TC221) and 5.2 and 3.7µg/mL against BALB/3T3 cells, respectively. A bioassay-guided fractionation on the methanolic extract yielded in identification of active fractions (F8 and F9) with IC50 values of 0.41 and 0.43µg/mL, respectively, against T. brucei (TC221) and 1.4 and 1.5µg/mL, respectively, against BALB/3T3 cells,. The phytochemical composition of the extracts and the purified fractions were investigated using HPLC-ESI-MS/MS and 1D and 2D NMR spectra showing the presence of sesquiterpene lactones that in turn were subjected to the isolation procedure. Tagitinin A and C were rather active but the latter presented a very strong inhibition on T. brucei (TC221) with an IC50 value of 0.0042µg/mL. This activity was 4.5 times better than that of the reference drug suramin. The results of this study shed light on the antitrypanosomal effects of T. diversifolia extracts and highlighted tagitinin C as one of the possible responsible for this effect. Further structure activity relationships studies on tagitinins are needed to consider this sesquiterpenes as lead compounds for the development of new antitrypanosomal drugs.


Subject(s)
Antimalarials/pharmacology , Asteraceae/chemistry , Plant Extracts/pharmacology , Sesquiterpenes/pharmacology , Animals , Antimalarials/isolation & purification , BALB 3T3 Cells , Mice , Plant Leaves/chemistry , Sesquiterpenes/isolation & purification , Trypanosoma brucei brucei/drug effects
14.
Article in English | MEDLINE | ID: mdl-28684709

ABSTRACT

Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea, and Echinops giganteus) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica, A. daniellii, and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC50) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils.


Subject(s)
Magnoliopsida , Oils, Volatile/pharmacology , Trypanosoma brucei brucei/drug effects , Animals , BALB 3T3 Cells , Cameroon , Humans , Mice , Microbial Sensitivity Tests , Monoterpenes/analysis , Oils, Volatile/chemistry , Plants, Medicinal , Sesquiterpenes/analysis , Trypanosoma brucei brucei/growth & development
15.
Molecules ; 22(6)2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28621748

ABSTRACT

There is an increasing need for the discovery of reliable and eco-friendly pesticides and natural plant-derived products may play a crucial role as source of new active compounds. In this research, a lipophilic extract of Onosma visianii roots extract containing 12% of shikonin derivatives demonstrated significant toxicity and inhibition of oviposition against Tetranychus urticae mites. Extensive chromatographic separation allowed the isolation of 11 naphthoquinone derivatives that were identified by spectral techniques and were tested against Tetranychus urticae. All the isolated compounds presented effects against the considered mite and isobutylshikonin (1) and isovalerylshikonin (2) were the most active, being valuable model compounds for the study of new anti-mite agents.


Subject(s)
Acaricides/chemistry , Acaricides/pharmacology , Boraginaceae/chemistry , Naphthoquinones/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Tetranychidae/drug effects , Animals
16.
Parasitol Int ; 66(2): 146-151, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28087440

ABSTRACT

Among natural products, sesquiterpenes have shown promising inhibitory effects against bloodstream forms of Trypanosoma brucei, the protozoan parasite causing human African trypanosomiasis (HAT). Smyrnium olusatrum (Apiaceae), also known as Alexanders or wild celery, is a neglected horticultural crop characterized by oxygenated sesquiterpenes containing a furan ring. In the present work we explored the potential of its essential oils obtained from different organs and the main oxygenated sesquiterpenes, namely isofuranodiene, germacrone and ß-acetoxyfuranoeudesm-4(15)-ene, as inhibitors of Trypanosoma brucei. All essential oils effectively inhibited the growth of parasite showing IC50 values of 1.9-4.0µg/ml. Among the main essential oil constituents, isofuranodiene exhibited a significant and selective inhibitory activity against T. brucei (IC50 of 0.6µg/ml, SI=30), with ß-acetoxyfuranoeudesm-4(15)-ene giving a moderate potentiating effect. These results shed light on the possible application of isofuranodiene as an antiprotozoal agent to be included in combination treatments aimed not only at curing patients but also at preventing the diffusion of HAT.


Subject(s)
Apiaceae/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Animals , BALB 3T3 Cells , Flowers/chemistry , Fruit/chemistry , Furans/isolation & purification , Furans/pharmacology , Humans , Inhibitory Concentration 50 , Mice , Oils, Volatile/chemistry , Plant Leaves/chemistry , Plant Oils/chemistry , Plant Roots/chemistry , Sesquiterpenes, Germacrane/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology
17.
Molecules ; 21(8)2016 Aug 13.
Article in English | MEDLINE | ID: mdl-27529211

ABSTRACT

Erigeron floribundus (Asteraceae) is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD), a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%), caryophyllene oxide (12.4%) and limonene (8.8%). The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL). Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL), with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 µmol·TE/g).


Subject(s)
Erigeron/chemistry , Oils, Volatile/pharmacology , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bacteria/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Inhibitory Concentration 50 , Mice , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL