Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cochrane Database Syst Rev ; 9: CD013877, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36063364

ABSTRACT

BACKGROUND: Loss of olfactory function is well recognised as a symptom of COVID-19 infection, and the pandemic has resulted in a large number of individuals with abnormalities in their sense of smell. For many, the condition is temporary and resolves within two to four weeks. However, in a significant minority the symptoms persist. At present, it is not known whether early intervention with any form of treatment (such as medication or olfactory training) can promote recovery and prevent persisting olfactory disturbance. This is an update of the 2021 review with four studies added. OBJECTIVES: 1) To evaluate the benefits and harms of any intervention versus no treatment for people with acute olfactory dysfunction due to COVID-19 infection.  2) To keep the evidence up-to-date, using a living systematic review approach.  SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane ENT Register; Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE; Ovid Embase; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the latest search was 20 October 2021. SELECTION CRITERIA: We included randomised controlled trials (RCTs) in people with COVID-19 related olfactory disturbance, which had been present for less than four weeks. We included any intervention compared to no treatment or placebo.  DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were the presence of normal olfactory function, serious adverse effects and change in sense of smell. Secondary outcomes were the prevalence of parosmia, change in sense of taste, disease-related quality of life and other adverse effects (including nosebleeds/bloody discharge). We used GRADE to assess the certainty of the evidence for each outcome.  MAIN RESULTS: We included five studies with 691 participants. The studies evaluated the following interventions: intranasal corticosteroid sprays, intranasal corticosteroid drops, intranasal hypertonic saline and zinc sulphate.  Intranasal corticosteroid spray compared to no intervention/placebo We included three studies with 288 participants who had olfactory dysfunction for less than four weeks following COVID-19. Presence of normal olfactory function The evidence is very uncertain about the effect of intranasal corticosteroid spray on both self-rated recovery of olfactory function and recovery of olfactory function using psychophysical tests at up to four weeks follow-up (self-rated: risk ratio (RR) 1.19, 95% confidence interval (CI) 0.85 to 1.68; 1 study; 100 participants; psychophysical testing: RR 2.3, 95% CI 1.16 to 4.63; 1 study; 77 participants; very low-certainty evidence).  Change in sense of smell The evidence is also very uncertain about the effect of intranasal corticosteroid spray on self-rated change in the sense of smell (at less than 4 weeks: mean difference (MD) 0.5 points lower, 95% CI 1.38 lower to 0.38 higher; 1 study; 77 participants; at > 4 weeks to 3 months: MD 2.4 points higher, 95% CI 1.32 higher to 3.48 higher; 1 study; 100 participants; very low-certainty evidence, rated on a scale of 1 to 10, higher scores mean better olfactory function). Intranasal corticosteroids may make little or no difference to the change in sense of smell when assessed with psychophysical testing (MD 0.2 points, 95% CI 2.06 points lower to 2.06 points higher; 1 study; 77 participants; low-certainty evidence, 0- to 24-point scale, higher scores mean better olfactory function).  Serious adverse effects The authors of one study reported no adverse effects, but their intention to collect these data was not pre-specified so we are uncertain if these were systematically sought and identified. The remaining two studies did not report on adverse effects.  Intranasal corticosteroid drops compared to no intervention/placebo We included one study with 248 participants who had olfactory dysfunction for ≤ 15 days following COVID-19. Presence of normal olfactory function Intranasal corticosteroid drops may make little or no difference to self-rated recovery at > 4 weeks to 3 months (RR 1.00, 95% CI 0.89 to 1.11; 1 study; 248 participants; low-certainty evidence). No other outcomes were assessed by this study.  Data on the use of hypertonic saline nasal irrigation and the use of zinc sulphate to prevent persistent olfactory dysfunction are included in the full text of the review. AUTHORS' CONCLUSIONS: There is very limited evidence available on the efficacy and harms of treatments for preventing persistent olfactory dysfunction following COVID-19 infection. However, we have identified a number of ongoing trials in this area. As this is a living systematic review we will update the data regularly, as new results become available.


Subject(s)
COVID-19 , Olfaction Disorders , Rhinitis , Adrenal Cortex Hormones/therapeutic use , COVID-19/complications , Chronic Disease , Humans , Olfaction Disorders/etiology , Olfaction Disorders/prevention & control , Randomized Controlled Trials as Topic , Rhinitis/drug therapy , Smell , Zinc Sulfate
2.
Cochrane Database Syst Rev ; 7: CD013877, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34291812

ABSTRACT

BACKGROUND: Loss of olfactory function is well recognised as a cardinal symptom of COVID-19 infection, and the ongoing pandemic has resulted in a large number of affected individuals with abnormalities in their sense of smell. For many, the condition is temporary and resolves within two to four weeks. However, in a significant minority the symptoms persist. At present, it is not known whether early intervention with any form of treatment (such as medication or olfactory training) can promote recovery and prevent persisting olfactory disturbance.  OBJECTIVES: To assess the effects (benefits and harms) of interventions that have been used, or proposed, to prevent persisting olfactory dysfunction due to COVID-19 infection. A secondary objective is to keep the evidence up-to-date, using a living systematic review approach.  SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane COVID-19 Study Register; Cochrane ENT Register; CENTRAL; Ovid MEDLINE; Ovid Embase; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished studies. The date of the search was 16 December 2020. SELECTION CRITERIA: Randomised controlled trials including participants who had symptoms of olfactory disturbance following COVID-19 infection. Individuals who had symptoms for less than four weeks were included in this review. Studies compared any intervention with no treatment or placebo.  DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were the presence of normal olfactory function, serious adverse effects and change in sense of smell. Secondary outcomes were the prevalence of parosmia, change in sense of taste, disease-related quality of life and other adverse effects (including nosebleeds/bloody discharge). We used GRADE to assess the certainty of the evidence for each outcome.  MAIN RESULTS: We included one study of 100 participants, which compared an intranasal steroid spray to no intervention. Participants in both groups were also advised to undertake olfactory training for the duration of the trial. Data were identified for only two of the prespecified outcomes for this review, and no data were available for the primary outcome of serious adverse effects. Intranasal corticosteroids compared to no intervention (all using olfactory training) Presence of normal olfactory function after three weeks of treatment was self-assessed by the participants, using a visual analogue scale (range 0 to 10, higher scores = better). A score of 10 represented "completely normal smell sensation". The evidence is very uncertain about the effect of intranasal corticosteroids on self-rated recovery of sense of smell (estimated absolute effect 619 per 1000 compared to 520 per 1000, risk ratio (RR) 1.19, 95% confidence interval (CI) 0.85 to 1.68; 1 study; 100 participants; very low-certainty evidence).  Change in sense of smell was not reported, but the self-rated score for sense of smell was reported at the endpoint of the study with the same visual analogue scale (after three weeks of treatment). The median scores at endpoint were 10 (interquartile range (IQR) 9 to 10) for the group receiving intranasal corticosteroids, and 10 (IQR 5 to 10) for the group receiving no intervention (1 study; 100 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS: There is very limited evidence regarding the efficacy of different interventions at preventing persistent olfactory dysfunction following COVID-19 infection. However, we have identified a small number of additional ongoing studies in this area. As this is a living systematic review, the evidence will be updated regularly to incorporate new data from these, and other relevant studies, as they become available.  For this (first) version of the living review, we identified a single study of intranasal corticosteroids to include in this review, which provided data for only two of our prespecified outcomes. The evidence was of very low certainty, therefore we were unable to determine whether intranasal corticosteroids may have a beneficial or harmful effect.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , COVID-19/complications , Mometasone Furoate/administration & dosage , Olfaction Disorders/drug therapy , Phytotherapy/methods , Administration, Intranasal , Bias , Citrus , Confidence Intervals , Humans , Olfaction Disorders/etiology , Olfaction Disorders/prevention & control , Recovery of Function , Syzygium , Visual Analog Scale
3.
Clin Otolaryngol ; 46(5): 1037-1043, 2021 09.
Article in English | MEDLINE | ID: mdl-33817954

ABSTRACT

OBJECTIVES: We set out to create Consensus Guidelines, based on current evidence and relative risks of adverse effects and the costs of different treatments, which reflect the views of the British Rhinological Society (BRS) Council on where the use of biologics should be positioned within treatment pathways for CRSwNP, specifically in the setting of the National Health Service (NHS). DESIGN: An expert panel of 16 members was assembled. A review of the literature and evidence synthesis was undertaken and circulated to the panel. We used the RAND/UCLA methodology with a multi-step process to make recommendations on the use of biologics. SETTING: N/A. PARTICIPANTS: N/A. RESULTS: Recommendations were made, based on underlying disease severity, prior treatments and co-morbidities. A group of patients for whom biologics were considered an appropriate treatment option for CRSwNP was defined. CONCLUSIONS: Although biologics are not currently available for the treatment of CRSwNP, the BRS Council have defined a group of patients who have higher rates of "failure" with current treatment pathways, higher resource use and are more likely to suffer with uncontrolled symptoms. We would urge NICE to consider approval of biologics for such indications without applying further restrictions on use.


Subject(s)
Biological Products/therapeutic use , Biological Therapy/standards , Nasal Polyps/therapy , Rhinitis/therapy , Sinusitis/therapy , Chronic Disease , England , Humans , State Medicine
4.
Clin Otolaryngol ; 46(1): 16-22, 2021 01.
Article in English | MEDLINE | ID: mdl-32854169

ABSTRACT

OBJECTIVES: The primary aim of the study is to provide recommendations for the investigation and management of patients with new onset loss of sense of smell during the COVID-19 pandemic. DESIGN: After undertaking a literature review, we used the RAND/UCLA methodology with a multi-step process to reach consensus about treatment options, onward referral, and imaging. SETTING AND PARTICIPANTS: An expert panel consisting of 15 members was assembled. A literature review was undertaken prior to the study and evidence was summarised for the panellists. MAIN OUTCOME MEASURES: The panel undertook a process of ranking and classifying appropriateness of different investigations and treatment options for new onset loss of sense of smell during the COVID-19 pandemic. Using a 9-point Likert scale, panellists scored whether a treatment was: Not recommended, optional, or recommended. Consensus was achieved when more than 70% of responses fell into the category defined by the mean. RESULTS: Consensus was reached on the majority of statements after 2 rounds of ranking. Disagreement meant no recommendation was made regarding one treatment, using Vitamin A drops. Alpha-lipoic acid was not recommended, olfactory training was recommended for all patients with persistent loss of sense of smell of more than 2 weeks duration, and oral steroids, steroid rinses, and omega 3 supplements may be considered on an individual basis. Recommendations regarding the need for referral and investigation have been made. CONCLUSION: This study identified the appropriateness of olfactory training, different medical treatment options, referral guidelines and imaging for patients with COVID-19-related loss of sense of smell. The guideline may evolve as our experience of COVID-19 develops.


Subject(s)
COVID-19/complications , Consensus , Disease Management , Olfaction Disorders/therapy , Pandemics , Smell/physiology , COVID-19/epidemiology , Humans , Olfaction Disorders/etiology , Olfaction Disorders/physiopathology , SARS-CoV-2
5.
BMJ Open ; 9(4): e022644, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015263

ABSTRACT

OBJECTIVES: To explore patient views and perspectives of current management of chronic rhinosinusitis (CRS) in primary and secondary care. DESIGN: Semistructured qualitative telephone interviews as part of the MACRO programme (Defining best Management for Adults with Chronic RhinOsinusitis). SETTING: Primary care and secondary care ear, nose and throat outpatient clinics in the UK. PARTICIPANTS: Twenty-five patients consented to in-depth telephone interviews. Transcribed recordings were managed using NVivo software and analysed using inductive thematic analysis. RESULTS: CRS has a significant impact on patients' quality of life, affecting their ability to work effectively, their social interactions and daily living. Patients seek help when symptoms become unmanageable, but can become frustrated with the primary care system with difficulties obtaining an appointment, and lack of continuity of care. Patients perceive that general practitioners can be dismissive of CRS symptoms, and patients often prioritise other concerns when they consult. Health system barriers and poor communication can result in delays in accessing appropriate treatment and referral. Adherence to intranasal steroids is a problem and patients are uncertain about correct technique. Nasal irrigation can be time-consuming and difficult for patients to use. Secondary care consultations can appear rushed, and patients would like specialists to take a more 'holistic' approach to their management. Surgery is often considered a temporary solution, appropriate when medical options have been explored. CONCLUSIONS: Patients are frustrated with the management of their CRS, and poor communication can result in delays in receiving appropriate treatment and timely referral. Patients seek better understanding of their condition and guidance to support treatments decisions in light of uncertainties around the different medical and surgical options. Better coordinated care between general practice and specialist settings and consistency of advice has the potential to increase patient satisfaction and improve outcomes.


Subject(s)
Patient Satisfaction , Rhinitis/therapy , Sinusitis/therapy , Activities of Daily Living , Administration, Intranasal , Adult , Aged , Chronic Disease , Female , Humans , Interviews as Topic , Male , Medication Adherence , Middle Aged , Primary Health Care , Qualitative Research , Quality of Life , Rhinitis/psychology , Secondary Care , Sinusitis/psychology , Steroids/therapeutic use , Young Adult
6.
Cochrane Database Syst Rev ; 6: CD012597, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29932206

ABSTRACT

BACKGROUND: Allergic rhinitis is a common condition affecting both adults and children. Patients experience symptoms of nasal obstruction, rhinorrhoea, sneezing and nasal itching, which may affect their quality of life.Nasal irrigation with saline (salty water), also known as nasal douching, washing or lavage, is a procedure that rinses the nasal cavity with isotonic or hypertonic saline solutions. It can be performed with low positive pressure from a spray, pump or squirt bottle, with a nebuliser or with gravity-based pressure in which the person instils saline into one nostril and allows it to drain out of the other. Saline solutions are available over the counter and can be used alone or as an adjunct to other therapies. OBJECTIVES: To evaluate the effects of nasal saline irrigation in people with allergic rhinitis. SEARCH METHODS: The Cochrane ENT Information Specialist searched the ENT Trials Register; CENTRAL; Ovid MEDLINE; Ovid Embase; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 23 November 2017. SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing nasal saline irrigation, delivered by any means and with any volume, tonicity and alkalinity, with (a) no nasal saline irrigation or (b) other pharmacological treatments in adults and children with allergic rhinitis. We included studies comparing nasal saline versus no saline, where all participants also received pharmacological treatment (intranasal corticosteroids or oral antihistamines). DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. Primary outcomes were patient-reported disease severity and a common adverse effect - epistaxis. Secondary outcomes were disease-specific health-related quality of life (HRQL), individual symptom scores, general HRQL, the adverse effects of local irritation or discomfort, ear symptoms (pain or pressure) and nasal endoscopy scores. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics. MAIN RESULTS: We included 14 studies (747 participants). The studies included children (seven studies, 499 participants) and adults (seven studies, 248 participants). No studies reported outcomes beyond three months follow-up. Saline volumes ranged from 'very low' to 'high' volume. Where stated, studies used either hypertonic or isotonic saline solution.Nasal saline versus no saline treatmentAll seven studies (112 adults; 332 children) evaluating this comparison used different scoring systems for patient-reported disease severity, so we pooled the data using the standardised mean difference (SMD). Saline irrigation may improve patient-reported disease severity compared with no saline at up to four weeks (SMD -1.32, 95% confidence interval (CI) -1.84 to -0.81; 407 participants; 6 studies; low quality) and between four weeks and three months (SMD -1.44, 95% CI -2.39 to -0.48; 167 participants; 5 studies; low quality). Although the evidence was low quality the SMD values at both time points are considered large effect sizes. Subgroup analysis showed the improvement in both adults and children. Subgroup analyses for volume and tonicity were inconclusive due to heterogeneity.Two studies reported methods for recording adverse effects and five studies mentioned them. Two studies (240 children) reported no adverse effects (epistaxis or local discomfort) in either group and three only reported no adverse effects in the saline group.One study (48 children) reported disease-specific HRQL using a modified RCQ-36 scale. It was uncertain whether there was a difference between the groups at any of the specified time points (very low quality). No other secondary outcomes were reported.Nasal saline versus no saline with adjuvant use of intranasal steroids or oral antihistamines Three studies (40 adults; 79 children) compared saline with intranasal steroids versus intranasal steroids alone; one study (14 adults) compared saline with oral antihistamines versus oral antihistamines alone. It is uncertain if there is a difference in patient-reported disease severity at up to four weeks (SMD -0.60, 95% CI -1.34 to 0.15; 32 participants; 2 studies; very low quality) or from four weeks to three months (SMD -0.32, 95% CI -0.85 to 0.21; 58 participants; 2 studies; very low quality). Although none of the studies reported methods for recording adverse effects, three mentioned them: one study (40 adults; adjuvant intranasal steroids) reported no adverse effects (epistaxis or local discomfort) in either group; the other two only reported no adverse effects in the saline group.It is uncertain if saline irrigation in addition to pharmacological treatment improved disease-specific HRQL at four weeks to three months, compared with pharmacological treatment alone (SMD -1.26, 95% CI -2.47 to -0.05; 54 participants; 2 studies; very low quality). No other secondary outcomes were reported.Nasal saline versus intranasal steroidsIt is uncertain if there was a difference in patient-reported disease severity between nasal saline and intranasal steroids at up to four weeks (MD 1.06, 95% CI -1.65 to 3.77; 14 participants; 1 study), or between four weeks and three months (SMD 1.26, 95% CI -0.92 to 3.43; 97 participants; 3 studies), or indisease-specific HRQL between four weeks and three months (SMD 0.01, 95% CI -0.73 to 0.75; 83 participants; 2 studies). Only one study reported methods for recording adverse effects although three studies mentioned them. One (21 participants) reported two withdrawals due to adverse effects but did not describe these or state which group. Three studies reported no adverse effects (epistaxis or local discomfort) with saline, although one study reported that 27% of participants experienced local discomfort with steroid use. No other secondary outcomes were reported. AUTHORS' CONCLUSIONS: Saline irrigation may reduce patient-reported disease severity compared with no saline irrigation at up to three months in both adults and children with allergic rhinitis, with no reported adverse effects. No data were available for any outcomes beyond three months. The overall quality of evidence was low or very low. The included studies were generally small and used a range of different outcome measures to report disease severity scores, with unclear validation. This review did not include direct comparisons of saline types (e.g. different volume, tonicity).Since saline irrigation could provide a cheap, safe and acceptable alternative to intranasal steroids and antihistamines further high-quality, adequately powered research in this area is warranted.


Subject(s)
Rhinitis, Allergic/therapy , Sodium Chloride/administration & dosage , Administration, Intranasal , Adrenal Cortex Hormones/administration & dosage , Adult , Child , Histamine Antagonists/administration & dosage , Humans , Nasal Sprays , Randomized Controlled Trials as Topic , Sodium Chloride/adverse effects , Therapeutic Irrigation/adverse effects , Therapeutic Irrigation/methods
7.
Cochrane Database Syst Rev ; 4: CD011995, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27115216

ABSTRACT

BACKGROUND: This review is one of six looking at the primary medical management options for patients with chronic rhinosinusitis.Chronic rhinosinusitis is common and is characterised by inflammation of the lining of the nose and paranasal sinuses leading to nasal blockage, nasal discharge, facial pressure/pain and loss of sense of smell. The condition can occur with or without nasal polyps. Nasal saline irrigation is commonly used to improve patient symptoms. OBJECTIVES: To evaluate the effects of saline irrigation in patients with chronic rhinosinusitis. SEARCH METHODS: The Cochrane ENT Information Specialist searched the ENT Trials Register; Central Register of Controlled Trials (CENTRAL 2015, Issue 9); MEDLINE; EMBASE; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 30 October 2015. SELECTION CRITERIA: Randomised controlled trials (RCTs) with a follow-up period of at least three months comparing saline delivered to the nose by any means (douche, irrigation, drops, spray or nebuliser) with (a) placebo, (b) no treatment or (c) other pharmacological interventions. DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. Our primary outcomes were disease-specific health-related quality of life (HRQL), patient-reported disease severity and the commonest adverse event - epistaxis. Secondary outcomes included general HRQL, endoscopic nasal polyp score, computerised tomography (CT) scan score and the adverse events of local irritation and discomfort. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics. MAIN RESULTS: We included two RCTs (116 adult participants). One compared large-volume (150 ml) hypertonic (2%) saline irrigation with usual treatment over a six-month period; the other compared 5 ml nebulised saline twice a day with intranasal corticosteroids, treating participants for three months and evaluating them on completion of treatment and three months later. Large-volume, hypertonic nasal saline versus usual care One trial included 76 adult participants (52 intervention, 24 control) with or without polyps.Disease-specific HRQL was reported using the Rhinosinusitis Disability Index (RSDI; 0 to 100, 100 = best quality of life). At the end of three months of treatment, patients in the saline group were better than those in the placebo group (mean difference (MD) 6.3 points, 95% confidence interval (CI) 0.89 to 11.71) and at six months there was a greater effect (MD 13.5 points, 95% CI 9.63 to 17.37). We assessed the evidence to be of low quality for the three months follow-up and very low quality for the six months follow-up. Patient-reported disease severity was evaluated using a "single-item sinus symptom severity assessment" but the range of scores is not stated, making it impossible for us to determine the meaning of the data presented.No adverse effects data were collected in the control group but 23% of participants in the saline group experienced side effects including epistaxis. General HRQL was measured using SF-12 (0 to 100, 100 = best quality of life). No difference was found after three months of treatment (low quality evidence) but at six months there was a small difference favouring the saline group, which may not be of clinical significance and has high uncertainty (MD 10.5 points, 95% CI 0.66 to 20.34) (very low quality evidence). Low-volume, nebulised saline versus intranasal corticosteroids One trial included 40 adult participants with polyps. Our primary outcome of disease-specific HRQL was not reported. At the end of treatment (three months) the patients who had intranasal corticosteroids had less severe symptoms (MD -13.50, 95% CI -14.44 to -12.56); this corresponds to a large effect size. We assessed the evidence to be of very low quality. AUTHORS' CONCLUSIONS: The two studies were very different in terms of included populations, interventions and comparisons and so it is therefore difficult to draw conclusions for practice. The evidence suggests that there is no benefit of a low-volume (5 ml) nebulised saline spray over intranasal steroids. There is some benefit of daily, large-volume (150 ml) saline irrigation with a hypertonic solution when compared with placebo, but the quality of the evidence is low for three months and very low for six months of treatment.


Subject(s)
Rhinitis/drug therapy , Sinusitis/drug therapy , Sodium Chloride/administration & dosage , Administration, Intranasal , Adrenal Cortex Hormones/administration & dosage , Adult , Chronic Disease , Humans , Hypertonic Solutions/administration & dosage , Nasal Polyps/drug therapy , Nasal Sprays , Quality of Life , Randomized Controlled Trials as Topic , Therapeutic Irrigation/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL