Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Prog ; 105(4): 368504221137458, 2022.
Article in English | MEDLINE | ID: mdl-36474426

ABSTRACT

Atractylodes lancea, commonly known as Kod-Kamao in Thai, a traditional medicinal herb, is being developed for clinical use in cholangiocarcinoma. ß-eudesmol and atractylodin are the main active components of this herb which possess most of the pharmacological properties. However, the lack of adequate toxicity data would be a significant hindrance to their further development. The present study investigated the toxic effects of selected concentrations of ß-eudesmol and atractylodin in the heart, liver, and endocrine systems of zebrafish embryos. Study endpoints included changes in the expression of genes related to Na/K-ATPase activity in the heart, fatty acid-binding protein 10a and cytochrome P450 family 1 subfamily A member 1 in the liver, and cortisol levels in the endocrine system. Both compounds produced inhibitory effects on the Na/K-ATPase gene expressions in the heart. Both also triggered the biomarkers of liver toxicity. While ß-eudesmol did not alter the expression of the cytochrome P450 family 1 subfamily A member 1 gene, atractylodin at high concentrations upregulated the gene, suggesting its potential enzyme-inducing activity in this gene. ß-eudesmol, but not atractylodin, showed some stress-reducing properties with suppression of cortisol production.


Subject(s)
Endocrine System , Zebrafish , Animals , Zebrafish/genetics , Hormones , Cytochrome P450 Family 1 , Adenosine Triphosphatases
2.
Article in English | MEDLINE | ID: mdl-32805444

ABSTRACT

Atractylodin and ß-eudesmol are the major active ingredients of Atractylodes lancea (Thunb) DC. (AL). Both compounds exhibit various pharmacological activities, including anticancer activity against cholangiocarcinoma. Despite the widespread use of this plant in traditional medicine in China, Japan, Korea, and Thailand, studies of their toxicological profiles are limited. The present study aimed to evaluate the embryotoxicity of atractylodin and ß-eudesmol using the zebrafish model. Zebrafish embryos were exposed to a series of concentrations (6.3, 12.5, 25, 50, and 100 µM) of each compound up to 72 h post-fertilization (hpf). The results showed that atractylodin and ß-eudesmol induced mortality of zebrafish embryos with the 50% lethal concentration (LC50) of 36.8 and 53.0 µM, respectively. Both compounds also caused embryonic deformities, including pericardial edema, malformed head, yolk sac edema, and truncated body. Only ß-eudesmol decreased the hatching rates, while atractylodin reduced the heart rates of the zebrafish embryos. Additionally, both compounds increased reactive oxygen species (ROS) production and altered the transcriptional expression levels of superoxide dismutase 1 (sod1), catalase (cat), and glutathione S-transferase pi 2 (gstp2) genes. In conclusion, atractylodin and ß-eudesmol induce mortality, developmental toxicity, and oxidative stress in zebrafish embryos. These findings may imply similar toxicity of both compounds in humans.


Subject(s)
Embryo, Nonmammalian/pathology , Furans/toxicity , Sesquiterpenes, Eudesmane/toxicity , Animals , Atractylodes/chemistry , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Models, Animal , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Zebrafish
3.
Biomolecules ; 9(9)2019 09 16.
Article in English | MEDLINE | ID: mdl-31527550

ABSTRACT

Crinumasiaticum is a perennial herb widely distributed in many warmer regions, including Thailand, and is well-known for its medicinal and ornamental values. Crinum alkaloids contain numerous compounds, such as crinamine. Even though its mechanism of action is still unknown, crinamine was previously shown to possess anticancer activity. In this study, we demonstrate that crinamine was more cytotoxic to cervical cancer cells than normal cells. It also inhibited anchorage-independent tumor spheroid growth more effectively than existing chemotherapeutic drugs carboplatin and 5-fluorouracil or the CDK9 inhibitor FIT-039. Additionally, unlike cisplatin, crinamine induced apoptosis without promoting DNA double-strand breaks. It suppressed cervical cancer cell migration by inhibiting the expression of positive regulators of epithelial-mesenchymal transition SNAI1 and VIM. Importantly, crinamine also exerted anti-angiogenic activities by inhibiting secretion of VEGF-A protein in cervical cancer cells and blood vessel development in zebrafish embryos. Gene expression analysis revealed that its mechanism of action might be attributed, in part, to downregulation of cancer-related genes, such as AKT1, BCL2L1, CCND1, CDK4, PLK1, and RHOA. Our findings provide a first insight into crinamine's anticancer activity, highlighting its potential use as an alternative bioactive compound for cervical cancer chemoprevention and therapy.


Subject(s)
Amaryllidaceae Alkaloids/administration & dosage , Angiogenesis Inhibitors/administration & dosage , Crinum/chemistry , Snail Family Transcription Factors/metabolism , Uterine Cervical Neoplasms/metabolism , Vimentin/metabolism , Amaryllidaceae Alkaloids/pharmacology , Angiogenesis Inhibitors/pharmacology , Animals , Carboplatin/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Embryo, Nonmammalian/blood supply , Embryo, Nonmammalian/drug effects , Epithelial-Mesenchymal Transition/drug effects , Female , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , Plant Extracts/chemistry , Pyridines/pharmacology , Uterine Cervical Neoplasms/blood supply , Uterine Cervical Neoplasms/drug therapy , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL