Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Nutrients ; 11(6)2019 Jun 16.
Article in English | MEDLINE | ID: mdl-31208147

ABSTRACT

Glycine is the proteinogenic amino-acid of lowest molecular weight, harboring a hydrogen atom as a side-chain. In addition to being a building-block for proteins, glycine is also required for multiple metabolic pathways, such as glutathione synthesis and regulation of one-carbon metabolism. Although generally viewed as a non-essential amino-acid, because it can be endogenously synthesized to a certain extent, glycine has also been suggested as a conditionally essential amino acid. In metabolic disorders associated with obesity, type 2 diabetes (T2DM), and non-alcoholic fatty liver disease (NAFLDs), lower circulating glycine levels have been consistently observed, and clinical studies suggest the existence of beneficial effects induced by glycine supplementation. The present review aims at synthesizing the recent advances in glycine metabolism, pinpointing its main metabolic pathways, identifying the causes leading to glycine deficiency-especially in obesity and associated metabolic disorders-and evaluating the potential benefits of increasing glycine availability to curb the progression of obesity and obesity-related metabolic disturbances. This study focuses on the importance of diet, gut microbiota, and liver metabolism in determining glycine availability in obesity and associated metabolic disorders.


Subject(s)
Diabetes Mellitus, Type 2/blood , Glycine/pharmacokinetics , Metabolic Diseases/blood , Non-alcoholic Fatty Liver Disease/blood , Obesity/blood , Biological Availability , Diabetes Mellitus, Type 2/etiology , Diet/adverse effects , Gastrointestinal Microbiome , Humans , Liver/metabolism , Metabolic Diseases/etiology , Non-alcoholic Fatty Liver Disease/etiology , Obesity/complications
2.
Clin Epigenetics ; 9: 110, 2017.
Article in English | MEDLINE | ID: mdl-29046732

ABSTRACT

BACKGROUND: Studies of genes that play an important role in the development of obesity are needed, especially studies focusing on genes that regulate food intake and affect nutrient metabolism. For example, the beta-3 adrenergic receptor (ADRB3) responds to noradrenaline and mediates lipolysis in adipocytes. METHODS: This was a controlled intervention study involving 40 overweight and obese adult women in which food intake, anthropometric measurements, biochemical analyses, and methylation levels of the ADRB3 gene were evaluated before and after intervention. The individuals were randomized into four groups: group 1 (G1) received 300 g of vegetables and legumes containing on average 191 µg/day of folate and 1 hazelnut oil capsule; group 2 (G2) received 300 g of vegetables and legumes containing on average 191 µg/day of folate and 1 placebo capsule; group 3 (G3) received 300 g of vegetables and legumes containing on average 90 µg/day of folate and 1 hazelnut oil capsule; and individuals in group 4 (G4) were only followed-up and maintained their regular dietary habits. Statistical analysis was performed using analysis of variance (ANOVA), Student's t test and simple regression, using STATA 13 software. RESULTS: In the total sample, after the intervention, the women classified as overweight and obese did not present weight loss, and there was a reduction in the methylation levels of the ADRB3 gene and malondialdehyde, as well as an increase in high-density lipoprotein cholesterol and total antioxidant capacity. CONCLUSIONS: The beneficial effect of the intake of a hazelnut capsule on the methylation levels of the ADRB3 gene was demonstrated for the first time. TRIAL REGISTRATION: ClinicalTrials.gov, NCT 02846025.


Subject(s)
DNA Methylation/drug effects , Folic Acid/administration & dosage , Obesity/diet therapy , Overweight/diet therapy , Plant Oils/administration & dosage , Receptors, Adrenergic, beta-3/genetics , Adult , Corylus/chemistry , Double-Blind Method , Epigenesis, Genetic/drug effects , Female , Folic Acid/pharmacology , Humans , Lipids/analysis , Middle Aged , Obesity/genetics , Overweight/genetics , Oxidative Stress/drug effects , Plant Oils/pharmacology , Treatment Outcome , Young Adult
3.
Med Sci (Paris) ; 32(1): 27-34, 2016 Jan.
Article in French | MEDLINE | ID: mdl-26850604

ABSTRACT

According to the new paradigm of the Developpemental Origins of Health and Disease (DOHaD), the environmental factors to which an individual is exposed throughout his life can leave an epigenetic footprint on the genome. A crucial period is the early development, where the epigenome is particularly sensitive to the effects of the environment, and during which the individual builds up his health capital that will enable him to respond more or less well to the vagaries of life. The research challenge is to decipher the modes of action and the epigenetic mechanisms put into play by environmental factors that lead to increased disease susceptibility or resilience. The challenge for health is to translate these scientific discoveries into action through, among others, the establishment of preventive recommendations to slow down the growing incidence of non communicable diseases.


Subject(s)
Disease/etiology , Environment , Epigenesis, Genetic/physiology , Health , Prenatal Exposure Delayed Effects/etiology , Disease Susceptibility/etiology , Female , Gene-Environment Interaction , Humans , Pregnancy , Prenatal Exposure Delayed Effects/genetics
SELECTION OF CITATIONS
SEARCH DETAIL