Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
Chemosphere ; 255: 126951, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32417512

ABSTRACT

The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments.


Subject(s)
Geologic Sediments/chemistry , Uranium/chemistry , Water Pollutants, Radioactive/chemistry , Bacteria , Groundwater/chemistry , Nitrates/analysis , Organic Chemicals , Sulfates/analysis , Uranium/analysis , Water Pollutants, Radioactive/analysis
2.
Appl Environ Microbiol ; 86(3)2020 01 21.
Article in English | MEDLINE | ID: mdl-31757822

ABSTRACT

Akkermansia muciniphila is a mucin-degrading bacterium found in the gut of most humans and is considered a "next-generation probiotic." However, knowledge of the genomic and physiological diversity of human-associated Akkermansia sp. strains is limited. Here, we reconstructed 35 metagenome-assembled genomes and combined them with 40 publicly available genomes for comparative genomic analysis. We identified at least four species-level phylogroups (AmI to AmIV), with distinct functional potentials. Most notably, we identified genes for cobalamin (vitamin B12) biosynthesis within the AmII and AmIII phylogroups. To verify these predictions, 10 Akkermansia strains were isolated from adults and screened for vitamin B12 biosynthesis genes via PCR. Two AmII strains were positive for the presence of cobalamin biosynthesis genes, while all 9 AmI strains tested were negative. To demonstrate vitamin B12 biosynthesis, we measured the production of acetate, succinate, and propionate in the presence and absence of vitamin supplementation in representative strains of the AmI and AmII phylogroups, since cobalamin is an essential cofactor in propionate metabolism. Results showed that the AmII strain produced acetate and propionate in the absence of supplementation, which is indicative of vitamin B12 biosynthesis. In contrast, acetate and succinate were the main fermentation products for the AmI strains when vitamin B12 was not supplied in the culture medium. Lastly, two bioassays were used to confirm vitamin B12 production by the AmII phylogroup. This novel physiological trait of human-associated Akkermansia strains may affect how these bacteria interact with the human host and other members of the human gut microbiome.IMPORTANCE There is significant interest in the therapeutic and probiotic potential of the common gut bacterium Akkermansia muciniphila However, knowledge of both the genomic and physiological diversity of this bacterial lineage is limited. Using a combination of genomic, molecular biological, and traditional microbiological approaches, we identified at least four species-level phylogroups with differing functional potentials that affect how these bacteria interact with both their human host and other members of the human gut microbiome. Specifically, we identified and isolated Akkermansia strains that were able to synthesize vitamin B12 The ability to synthesize this important cofactor broadens the physiological capabilities of human-associated Akkermansia strains, fundamentally altering our understanding of how this important bacterial lineage may affect human health.


Subject(s)
Genome, Bacterial , Verrucomicrobia/genetics , Vitamin B 12/biosynthesis , Vitamins/biosynthesis , Child , Child, Preschool , Genomics , Humans , Verrucomicrobia/metabolism , Vitamin B 12/genetics , Vitamins/genetics
3.
J Bacteriol ; 194(18): 5147-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22933770

ABSTRACT

Pelosinus fermentans 16S rRNA gene sequences have been reported from diverse geographical sites since the recent isolation of the type strain. We present the genome sequence of the P. fermentans type strain R7 (DSM 17108) and genome sequences for two new strains with different abilities to reduce iron, chromate, and uranium.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Veillonellaceae/genetics , Chromium/metabolism , Environmental Microbiology , Environmental Pollutants/metabolism , Iron/metabolism , Molecular Sequence Data , Oxidation-Reduction , Uranium/metabolism , Veillonellaceae/isolation & purification , Veillonellaceae/metabolism
4.
Appl Environ Microbiol ; 78(7): 2082-91, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22267668

ABSTRACT

The determination of the success of in situ bioremediation strategies is complex. By using controlled laboratory conditions, the influence of individual variables, such as U(VI), Cr(VI), and electron donors and acceptors on community structure, dynamics, and the metal-reducing potential can be studied. Triplicate anaerobic, continuous-flow reactors were inoculated with Cr(VI)-contaminated groundwater from the Hanford, WA, 100-H area, amended with lactate, and incubated for 95 days to obtain stable, enriched communities. The reactors were kept anaerobic with N(2) gas (9 ml/min) flushing the headspace and were fed a defined medium amended with 30 mM lactate and 0.05 mM sulfate with a 48-h generation time. The resultant diversity decreased from 63 genera within 12 phyla to 11 bacterial genera (from 3 phyla) and 2 archaeal genera (from 1 phylum). Final communities were dominated by Pelosinus spp. and to a lesser degree, Acetobacterium spp., with low levels of other organisms, including methanogens. Four new strains of Pelosinus were isolated, with 3 strains being capable of Cr(VI) reduction while one also reduced U(VI). Under limited sulfate, it appeared that the sulfate reducers, including Desulfovibrio spp., were outcompeted. These results suggest that during times of electron acceptor limitation in situ, organisms such as Pelosinus spp. may outcompete the more-well-studied organisms while maintaining overall metal reduction rates and extents. Finally, lab-scale simulations can test new strategies on a smaller scale while facilitating community member isolation, so that a deeper understanding of community metabolism can be revealed.


Subject(s)
Biodegradation, Environmental , Ecosystem , Geologic Sediments/microbiology , Lactates/metabolism , Uranium/metabolism , Veillonellaceae/growth & development , Archaea/classification , Archaea/genetics , Archaea/growth & development , Archaea/isolation & purification , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Bacteria/metabolism , Bioreactors , Chromium/metabolism , Culture Media , DNA, Archaeal/analysis , DNA, Archaeal/genetics , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Groundwater/microbiology , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Veillonellaceae/classification , Veillonellaceae/genetics , Veillonellaceae/isolation & purification
5.
Microb Ecol ; 60(4): 784-95, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20725722

ABSTRACT

Archaeal communities from mercury and uranium-contaminated freshwater stream sediments were characterized and compared to archaeal communities present in an uncontaminated stream located in the vicinity of Oak Ridge, TN, USA. The distribution of the Archaea was determined by pyrosequencing analysis of the V4 region of 16S rRNA amplified from 12 streambed surface sediments. Crenarchaeota comprised 76% of the 1,670 archaeal sequences and the remaining 24% were from Euryarchaeota. Phylogenetic analysis further classified the Crenarchaeota as a Freshwater Group, Miscellaneous Crenarchaeota group, Group I3, Rice Cluster VI and IV, Marine Group I and Marine Benthic Group B; and the Euryarchaeota into Methanomicrobiales, Methanosarcinales, Methanobacteriales, Rice Cluster III, Marine Benthic Group D, Deep Sea Hydrothermal Vent Euryarchaeota 1 and Eury 5. All groups were previously described. Both hydrogen- and acetate-dependent methanogens were found in all samples. Most of the groups (with 60% of the sequences) described in this study were not similar to any cultivated isolates, making it difficult to discern their function in the freshwater microbial community. A significant decrease in the number of sequences, as well as in the diversity of archaeal communities was found in the contaminated sites. The Marine Group I, including the ammonia oxidizer Nitrosopumilus maritimus, was the dominant group in both mercury and uranium/nitrate-contaminated sites. The uranium-contaminated site also contained a high concentration of nitrate, thus Marine Group I may play a role in nitrogen cycle.


Subject(s)
Archaea/isolation & purification , Geologic Sediments/microbiology , Rivers/microbiology , Archaea/classification , Archaea/genetics , Archaea/metabolism , Biodiversity , DNA, Archaeal/genetics , DNA, Ribosomal/genetics , Mercury/metabolism , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Uranium/metabolism , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL