Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Biol Sci ; 290(2003): 20231204, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37464756

ABSTRACT

The inter-relationships between cellular phosphorus (P) storage, dissolved inorganic P (DIP) uptake affinity, alkaline phosphatase activity (APA) and dissolved inorganic nitrogen (DIN) concentrations were studied in two ubiquitous diazotrophic freshwater cyanobacteria, Raphidiopsis raciborskii (six strains) and Chrysosporum ovalisporum (two strains). DIP uptake kinetics were measured using rates of incorporation of the radio-isotope, 33P and APA as a proxy for DOP-ester utilization. The study showed that DIP uptake of individual strains followed Michaelis-Menten kinetics (modified in our study to incorporate cellular P quotas), but differed with DIN and P availability, and between growth stages. High-affinity DIP uptake and APA were activated below a P quota threshold of approximately 0.01 µg P µg-1 C across the species and strains. C. ovalisporum had significantly higher APA and P quotas (per unit C and cell) but lower uptake affinity than R. raciborskii. Demand for DIP by C. ovalisporum increased when N fixation occurred, but typically not for R. raciborskii. Our results indicate that cyanobacterial species and strains differ in their strategies to P limiting conditions, and highlight the interplay between N and P. Physiological adaptations like APA and diazotrophy of cyanobacteria adapting to low DIP and/or DIN conditions may occur simultaneously and drive species dominance in oligotrophic environments.


Subject(s)
Cyanobacteria , Phosphorus , Fresh Water , Kinetics , Nitrogen Fixation
2.
FEMS Microbiol Rev ; 46(6)2022 11 02.
Article in English | MEDLINE | ID: mdl-35749580

ABSTRACT

David Schindler and his colleagues pioneered studies in the 1970s on the role of phosphorus in stimulating cyanobacterial blooms in North American lakes. Our understanding of the nuances of phosphorus utilization by cyanobacteria has evolved since that time. We review the phosphorus utilization strategies used by cyanobacteria, such as use of organic forms, alternation between passive and active uptake, and luxury storage. While many aspects of physiological responses to phosphorus of cyanobacteria have been measured, our understanding of the critical processes that drive species diversity, adaptation and competition remains limited. We identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations. We propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic cyanobacteria, and ultimately to mitigate the occurrence of blooms.


Subject(s)
Cyanobacteria , Lakes , Lakes/microbiology , Eutrophication , Cyanobacteria/physiology , Phosphorus , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL