Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Molecules ; 27(11)2022 May 29.
Article in English | MEDLINE | ID: mdl-35684429

ABSTRACT

Mitochondrial diseases (MDs) may result from mutations affecting nuclear or mitochondrial genes, encoding mitochondrial proteins, or non-protein-coding mitochondrial RNA. Despite the great variability of affected genes, in the most severe cases, a neuromuscular and neurodegenerative phenotype is observed, and no specific therapy exists for a complete recovery from the disease. The most used treatments are symptomatic and based on the administration of antioxidant cocktails combined with antiepileptic/antipsychotic drugs and supportive therapy for multiorgan involvement. Nevertheless, the real utility of antioxidant cocktail treatments for patients affected by MDs still needs to be scientifically demonstrated. Unfortunately, clinical trials for antioxidant therapies using α-tocopherol, ascorbate, glutathione, riboflavin, niacin, acetyl-carnitine and coenzyme Q have met a limited success. Indeed, it would be expected that the employed antioxidants can only be effective if they are able to target the specific mechanism, i.e., involving the central and peripheral nervous system, responsible for the clinical manifestations of the disease. Noteworthily, very often the phenotypes characterizing MD patients are associated with mutations in proteins whose function does not depend on specific cofactors. Conversely, the administration of the antioxidant cocktails might determine the suppression of endogenous oxidants resulting in deleterious effects on cell viability and/or toxicity for patients. In order to avoid toxicity effects and before administering the antioxidant therapy, it might be useful to ascertain the blood serum levels of antioxidants and cofactors to be administered in MD patients. It would be also worthwhile to check the localization of mutations affecting proteins whose function should depend (less or more directly) on the cofactors to be administered, for estimating the real need and predicting the success of the proposed cofactor/antioxidant-based therapy.


Subject(s)
Antioxidants , Mitochondrial Diseases , Precision Medicine , Anticonvulsants/therapeutic use , Antioxidants/therapeutic use , DNA, Mitochondrial/genetics , Humans , Mitochondria/metabolism , Mitochondrial Diseases/drug therapy , Mitochondrial Proteins/metabolism
2.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613531

ABSTRACT

Vitamin D may have multiple effects on the nervous system and its deficiency can represent a possible risk factor for the development of many neurological diseases. Recent studies are also trying to clarify the different effects of vitamin D supplementation over the course of progressive neurological diseases. In this narrative review, we summarise vitamin D chemistry, metabolism, mechanisms of action, and the recommended daily intake. The role of vitamin D on gene transcription and the immune response is also reviewed. Finally, we discuss the scientific evidence that links low 25-hydroxyvitamin D concentrations to the onset and progression of severe neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, migraine, diabetic neuropathy and amyotrophic lateral sclerosis. Completed and ongoing clinical trials on vitamin D supplementation in neurological diseases are listed.


Subject(s)
Diabetic Neuropathies , Multiple Sclerosis , Parkinson Disease , Vitamin D Deficiency , Humans , Vitamin D/metabolism , Vitamins/therapeutic use , Multiple Sclerosis/drug therapy , Parkinson Disease/drug therapy , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/metabolism , Diabetic Neuropathies/drug therapy
3.
Cell Metab ; 27(5): 1007-1025.e5, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29657030

ABSTRACT

Using molecular, biochemical, and untargeted stable isotope tracing approaches, we identify a previously unappreciated glutamine-derived α-ketoglutarate (αKG) energy-generating anaplerotic flux to be critical in mitochondrial DNA (mtDNA) mutant cells that harbor human disease-associated oxidative phosphorylation defects. Stimulating this flux with αKG supplementation enables the survival of diverse mtDNA mutant cells under otherwise lethal obligatory oxidative conditions. Strikingly, we demonstrate that when residual mitochondrial respiration in mtDNA mutant cells exceeds 45% of control levels, αKG oxidative flux prevails over reductive carboxylation. Furthermore, in a mouse model of mitochondrial myopathy, we show that increased oxidative αKG flux in muscle arises from enhanced alanine synthesis and release into blood, concomitant with accelerated amino acid catabolism from protein breakdown. Importantly, in this mouse model of mitochondriopathy, muscle amino acid imbalance is normalized by αKG supplementation. Taken together, our findings provide a rationale for αKG supplementation as a therapeutic strategy for mitochondrial myopathies.


Subject(s)
DNA, Mitochondrial/genetics , Glutamine/metabolism , Ketoglutaric Acids , Mitochondria , Mitochondrial Myopathies , Adaptation, Physiological , Alanine/metabolism , Animals , Disease Models, Animal , Energy Metabolism , HeLa Cells , Humans , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/therapeutic use , Male , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Myopathies/genetics , Mitochondrial Myopathies/metabolism , Mutation , Oxidative Phosphorylation
4.
J Spinal Cord Med ; 38(4): 559-62, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25343982

ABSTRACT

CONTEXT: Copper deficiency myelopathy represents an often underdiagnosed, acquired neurological syndrome, clinically characterized by posterior column dysfunction. The main causes of copper deficiency are bariatric surgery, increased consumption of zinc, and malabsorption. However, even after a careful history taking and extensive laboratory researches, the etiology of copper deficiency remains undetermined in a significant percentage of cases. Patients affected by copper deficiency myelopathy usually present with sensory ataxia due to dorsal column dysfunction and sometimes with mild leg spasticity. In such patients, spinal cord magnetic resonance imaging (MRI) may show hyperintense lesions in T2-weighted sequences involving the posterior columns of cervical and thoracic cord. These MRI findings are not distinguishable from those of subacute combined degeneration associated with vitamin B12 deficiency. FINDINGS: Here, we describe two patients with gait ataxia and sensory symptoms in which a diagnosis of copper deficiency myelopathy was made. Both patients showed a significant clinical, neuroradiological, and neurophysiological improvement after proper supplementation therapy. CONCLUSION: The patients herein described underline the importance to include serum copper and ceruloplasmin levels as part of the myelopathy diagnostic workup, especially in the cases of otherwise unexplained subacute myelopathy involving the posterior columns. Since copper deficiency myelopathy is a progressive syndrome, early diagnosis is mandatory in order to promptly provide a proper supplementation therapy and, thus, prevent an irreversible neurological damage.


Subject(s)
Copper/deficiency , Spinal Cord Diseases/diagnosis , Female , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL