Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
J Allergy Clin Immunol ; 152(6): 1646-1657.e11, 2023 12.
Article in English | MEDLINE | ID: mdl-37558060

ABSTRACT

BACKGROUND: Gestational vitamin D deficiency is implicated in development of respiratory diseases in offspring, but the mechanism underlying this relationship is unknown. OBJECTIVE: We sought to study the link between gestational vitamin D exposure and childhood asthma phenotypes using maternal blood metabolomics profiling. METHODS: Untargeted blood metabolic profiles were acquired using liquid chromatography-mass spectrometry at 1 week postpartum from 672 women in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort and at pregnancy weeks 32 to 38 from 779 women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) mother-child cohort. In COPSAC2010, we employed multivariate models and pathway enrichment analysis to identify metabolites and pathways associated with gestational vitamin D blood levels and investigated their relationship with development of asthma phenotypes in early childhood. The findings were validated in VDAART and in cellular models. RESULTS: In COPSAC2010, higher vitamin D blood levels at 1 week postpartum were associated with distinct maternal metabolome perturbations with significant enrichment of the sphingomyelin pathway (P < .01). This vitamin D-related maternal metabolic profile at 1 week postpartum containing 46 metabolites was associated with decreased risk of recurrent wheeze (hazard ratio [HR] = 0.92 [95% CI 0.86-0.98], P = .01) and wheeze exacerbations (HR = 0.90 [95% CI 0.84-0.97], P = .01) at ages 0 to 3 years. The same metabolic profile was similarly associated with decreased risk of asthma/wheeze at ages 0 to 3 in VDAART (odds ratio = 0.92 [95% CI 0.85-0.99], P = .04). Human bronchial epithelial cells treated with high-dose vitamin D3 showed an increased cytoplasmic sphingolipid level (P < .01). CONCLUSIONS: This exploratory metabolomics study in 2 independent birth cohorts demonstrates that the beneficial effect of higher gestational vitamin D exposure on offspring respiratory health is characterized by specific maternal metabolic alterations during pregnancy, which involves the sphingomyelin pathway.


Subject(s)
Asthma , Vitamin D , Child, Preschool , Female , Humans , Pregnancy , Metabolome , Prospective Studies , Respiratory Sounds , Sphingomyelins , Clinical Trials as Topic
2.
J Allergy Clin Immunol ; 151(2): 556-564, 2023 02.
Article in English | MEDLINE | ID: mdl-36400177

ABSTRACT

BACKGROUND: Prior studies suggest that vitamin D may modify the effects of environmental exposures; however, none have investigated gestational vitamin D and cumulative tobacco smoke exposure (TSE) throughout pregnancy and early life. OBJECTIVES: This study investigated the effects of early life TSE on child lung function and the modulatory effects of gestational vitamin D on this association. METHODS: The VDAART (Vitamin D Antenatal Asthma Reduction Trial) recruited nonsmoking pregnant women and followed the mother-child pairs to age 6 years. TSE was assessed with questionnaires and plasma cotinine measurements in the mothers (10-18 and 32-38 gestational weeks) and children (1, 3, and 6 years). Cumulative TSE was calculated from the repeated cotinine measurements. 25-hydroxyvitamin D (25[OH]D) levels were measured at 10-18 and 32-38 gestational weeks. Lung function was assessed at 6 years with spirometry and impulse oscillometry. RESULTS: Of the 476 mother-child pairs, 205 (43%) had increased cotinine levels at ≥1 time point. Cumulative TSE was associated with decreased FEV1 (ß = -0.043 L, P = .018) and increased respiratory resistance at 5 Hz (R5; ß = 0.060 kPa/L/s, P = .002). This association persisted in subjects with insufficient (<30 ng/mL) 25(OH)D levels throughout pregnancy (ß = 0.077 kPa/L/s, P = .016 for R5) but not among those with sufficient levels throughout pregnancy. CONCLUSIONS: Cumulative TSE from pregnancy to childhood is associated with dose- and duration-dependent decreases in child lung function at 6 years even in the absence of reported maternal smoking. Gestational vitamin D may modulate this effect and have therapeutic potential for minimizing the adverse effect of TSE on lung throughout early life. RANDOMIZED TRIAL: Maternal Vitamin D Supplementation to Prevent Childhood Asthma (VDAART); clinicaltrials.gov identifier: NCT00920621.


Subject(s)
Asthma , Nicotiana , Female , Humans , Pregnancy , Child , Cotinine , Vitamin D , Vitamins , Asthma/prevention & control , Lung
3.
Methods Mol Biol ; 2102: 3-15, 2020.
Article in English | MEDLINE | ID: mdl-31989547

ABSTRACT

Toxicology is a broad field that requires the translation of biochemical responses to xenobiotic exposures into useable information to ensure the safety of the public. Modern techniques are improving rapidly, both quantitatively and qualitatively, to provide the tools necessary to expand available toxicological datasets and refine our ability to translate that data into relevant information via bioinformatics. These new techniques can, and do, impact many of the current critical roles in toxicology, including the environmental, forensic, preclinical/clinical, and regulatory realms. One area of rapid expansion is our understanding of bioenergetics, or the study of the transformation of energy in living organisms, and new mathematical approaches are needed to interpret these large datasets. As bioenergetics are intimately involved in the regulation of how and when a cell responds to xenobiotics, monitoring these changes (i.e., metabolic fluctuations) in cells/tissues post-exposure provides an approach to define the temporal scale of pharmacodynamic responses, which can be used to guide additional toxicological techniques (e.g., "omics"). This chapter will summarize important in vitro assays and in vivo imaging techniques to take real-time measurements. Using this information, our laboratory has utilized bioenergetics to identify significant time points of pharmacodynamic relevance as well as forecast the cell's eventual fate.


Subject(s)
Biological Assay/methods , Energy Metabolism/physiology , Mitochondria/metabolism , Toxicology/methods , 4-Chloro-7-nitrobenzofurazan/analogs & derivatives , 4-Chloro-7-nitrobenzofurazan/metabolism , 4-Chloro-7-nitrobenzofurazan/pharmacology , Adenosine Triphosphate/metabolism , Animals , Cell Survival/drug effects , Cell Survival/physiology , Deoxyglucose/analogs & derivatives , Deoxyglucose/metabolism , Deoxyglucose/pharmacology , Energy Metabolism/drug effects , Fluorodeoxyglucose F18/metabolism , Humans , In Vitro Techniques , Indocyanine Green/pharmacology , Mitochondria/drug effects , Mitochondria/physiology , NAD/metabolism , NADP/metabolism , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Positron Emission Tomography Computed Tomography , Workflow , Xenobiotics
SELECTION OF CITATIONS
SEARCH DETAIL