Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Planta Med ; 85(5): 370-378, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30463098

ABSTRACT

Breast cancer is a complex disease driven by multiple factors including both genetic and epigenetic alterations. Recent studies revealed that abnormal gene expression induced by epigenetic changes including aberrant promoter methylation plays a critical role in human breast carcinogenesis. Cucurbitacin B has antiproliferative activity against various human breast cancer cells, but the molecular mechanism is not completely understood. In this study, we explore the influence of cucurbitacin B from Trichosanthes cucumerina on the methylation status at the promoter of oncogenes c-Myc, cyclin D1, and survivin in breast cancer cell lines. Growth inhibitory effect of cucurbitacin B on breast cancer cells was assessed by MTT assay and colony formation assay. Methylation status of genomic DNA was determined by methylation-specific PCR. Gene and protein expression levels of all genes studied were analyzed by real-time RT-PCR and western blot. The results indicated that cucurbitacin B could inhibit cell growth in breast cancer cells. The oncogene promoters are usually hypomethylated in cancer cells. Upon cucurbitacin B treatment, upregulation of DNMT1 and obvious heavy methylation in the promoters of c-Myc, cyclin D1, and survivin, which consequently downregulated the expression of all these oncogenes, were observed. Hence, cucurbitacin B proved to be a potential cancer therapeutic agent, in part by inducing hypermethylation and silences the oncogenic activation.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic , Trichosanthes/chemistry , Triterpenes/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Breast Neoplasms/genetics , Cell Line, Tumor , Cyclin D1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/drug effects , Female , Humans , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-myc/genetics , Survivin/genetics , Triterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL