Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36355527

ABSTRACT

BACKGROUND: The face is the area most exposed to the normal course of skin aging, both intrinsically and extrinsically. The aim of the study was to evaluate the cellular and clinical response of a therapeutic protocol aimed at countering facial skin aging. MATERIALS AND METHODS: Twenty female patients with facial skin laxity and photodamage underwent combined therapy including mesotherapy using non-cross-linked hyaluronic acid with calcium hydroxyapatite and an infrared energy-based device treatment with subsequent implementation of PEG-cross-linked hyaluronic acid soft tissue fillers. To evaluate the benefits, patients underwent histological, immunological, and biomechanical evaluations before the treatment and at 21 and 150 days after the treatment. RESULTS: The histological results at 21 days and 150 days after the procedure showed an increase in the number of fibroblasts and angiogenesis. As for the immunological aspect, it was shown that the treatment has an immunomodulating action, avoiding the activation of CD4 and CD8 cells. Biomechanical data showed that, at 150 days after treatment, the average changes in skin elasticity increased by 72% and the skin hydration increased by 49%. CONCLUSIONS: A combination of an infrared energy-based device treatment with both non-cross-linked hyaluronic acid and novel PEG-cross-linked hyaluronic acid leads to numerous positive cutaneous changes after histological, immunological, and biomechanical evaluations.

2.
Biomed Res Int ; 2021: 5598110, 2021.
Article in English | MEDLINE | ID: mdl-34754881

ABSTRACT

Dermal papilla cells (DPCs) are a source of nutrients and growth factors, which support the proliferation and growth of keratinocytes as well as promoting the induction of new hair follicles and maintenance of hair growth. The protection from reactive oxygen species (ROS) and the promotion of angiogenesis are considered two of the basal mechanisms to preserve the growth of the hair follicle. In this study, a noncrosslinked hyaluronic acid (HA) filler (HYDRO DELUXE BIO, Matex Lab S.p.A.) containing several amino acids was tested with in vitro assays on human follicle dermal papilla cells (HFDPCs). The experiments were carried out to investigate the possible protection against oxidative stress and the ability to increase the vascular endothelial growth factor (VEGF) release. The results demonstrated the restoration of cell viability against UVB-induced cytotoxicity and an increase in the VEGF secretion. These data demonstrate the capability of the product to modulate human dermal papilla cells, suggesting a future use in mesotherapy, a minimally invasive local intradermal therapy (LIT), after further clinical investigations.


Subject(s)
Dermis/metabolism , Hair Follicle/metabolism , Hyaluronic Acid/pharmacology , Cells, Cultured , Dermis/drug effects , Dermis/growth & development , Hair/growth & development , Hair Follicle/drug effects , Humans , Hyaluronic Acid/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Vascular Endothelial Growth Factor A/drug effects , Vascular Endothelial Growth Factor A/metabolism
3.
Gels ; 7(1)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557183

ABSTRACT

The multicomponent preparations for mesotherapy are based on the principle that skin and hair aging can be prevented by supplying the fundamental substrates for correct cellular functioning, such as nucleotides, vitamins, amino acids, and biomolecules including hyaluronic acid (HA) that promote skin hydration and several biological activities. The study provides evidence for the application of HYDRO DELUXE BIO (Matex Lab S.p.A), a biocompatible hydrogel containing not cross-linked HA, for the treatment of the scalp's skin by mesotherapy. Using an in vitro model of immortalized human keratinocytes, we studied markers involved in hair aging prevention and growth, such as inflammatory markers, angiogenesis, and oxidative damage. HYDRO DELUXE BIO showed high biocompatibility and the ability to significantly reduce the expression of the inflammation marker interleukin (IL)-8 in Tumor Necrosis Factor (TNF)-stimulated cells. Then, we evaluated angiogenesis, a pivotal event during hair growth, measuring the Vascular Endothelial Growth Factor (VEGF) expression that resulted to be significantly increased in treated cells, suggesting a pro-angiogenetic capability. A protective activity against the oxidative stress agent was showed, increasing the survival rate in treated cells. Concluding, HYDRO DELUXE BIO is suitable for treatment by mesotherapy of the scalp's skin as it modulates the expression levels of markers involved in the biorevitalization of the hair follicle.

SELECTION OF CITATIONS
SEARCH DETAIL