Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Complement Med Ther ; 22(1): 316, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36456983

ABSTRACT

BACKGROUND: Accumulating evidence reveals that music therapy appears to help patients with pain. However, there is a limited understanding of the underlying mechanisms. Several studies indicate that leptin level has a crucial relationship with acute and chronic pain. Herein, we evaluated the effects of music stimulation and the potential roles of adipokines (leptin) in pain behaviors. METHODS: We used a tibial neuroma transposition (TNT) rat model to mimic neuroma pain. Adult male Sprague-Dawley rats were randomly assigned to one of the three groups (n = 6):group 1 (GC), TNT with white noise; group 2(GM), TNT with music; and group 3(GH), TNT. White noise and music stimulation was given once a day following surgery until the end of the study (42nd day). Pain behavioral tests were carried out before surgery and on the 3rd, 10th, 14th, 21st, 28th, 35th, and 42nd days after surgery. At the end of the observation period, we analyzed the histological samples of blood, spinal cord, and prefrontal cortex to investigate the role of leptin in pain behaviors modulated by white noise and sound stimulation. RESULT: Music therapy might improve the pain of TNT rats. Music stimulation ameliorated paw withdrawal thermal latency (PWTL) from the 3rd day after the surgery while the mechanical pain was improved 21 days after the operation.Music stimulation also increased leptin expression in the spinal cord, prefrontal cortex.White noise had no obvious effect. CONCLUSION: Music therapy might improve the pain of TNT rats. Besides, music stimulation ameliorated TNT-induced pain behaviors and affected leptin expression.


Subject(s)
Leptin , Music Therapy , Neuroma , Pain Management , Animals , Male , Rats , Leptin/metabolism , Neuroma/complications , Neuroma/therapy , Pain , Rats, Sprague-Dawley , Pain Management/methods
2.
Neurosci Res ; 163: 26-33, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32147472

ABSTRACT

SHANK3 is one of the scaffolding proteins in the postsynaptic density (PSD). Pain perception and underlying mechanisms were investigated in Shank3 exon 21 deficient (Shank3△C) mice. Sixty-six mice were attributed according to their genotype to three groups: (1) wild-type (WT), (2) heterozygous Shank3△C/+, and (3) homozygous Shank3△C/△C. Complete Freund's adjuvant (CFA) was used to induce inflammatory pain, and thermal hyperalgesia was determined. CFA treatment reduced the thermal threshold in the WT group; groups expressing mutations of Shank3 (△C/+ and △C/△C) had higher thresholds after CFA administration compared to the WT group. Mice with Shank3 mutations (△C/+ or △C/△C) had a lower expression of GluN2A and IP3R proteins and a higher expression of mGluR5 protein in the PSD compared to WT mice without changes in GluN1, GluN2B, and Homer expression. The crosslinking of Homer-IP3R, but not Homer-mGluR5, was decreased in the total lysate. Deficit of Shank3 exon 21 may lead to impaired perception of thermal pain in mice under inflammatory conditions. This impairment may result from protein dysregulation in the PSD like downregulation of the GluN2A subunit, which may reduce NMDAR-mediated currents, and/or decreased crosslinking between Homer and IP3R, which may reduce the release of Ca2+ from intracellular stores.


Subject(s)
Hyperalgesia , Spinal Cord , Animals , Freund's Adjuvant , Hyperalgesia/chemically induced , Mice , Microfilament Proteins , Nerve Tissue Proteins/genetics , Pain , Protein Isoforms
SELECTION OF CITATIONS
SEARCH DETAIL