Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Int J Toxicol ; : 10915818241237988, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477622

ABSTRACT

In silico modeling offers an opportunity to supplement and accelerate cardiac safety testing. With in silico modeling, computational simulation methods are used to predict electrophysiological interactions and pharmacological effects of novel drugs on critical physiological processes. The O'Hara-Rudy's model was developed to predict the response to different ion channel inhibition levels on cardiac action potential duration (APD) which is known to directly correlate with the QT interval. APD data at 30% 60% and 90% inhibition were derived from the model to delineate possible ventricular arrhythmia scenarios and the marginal contribution of each ion channel to the model. Action potential values were calculated for epicardial, myocardial, and endocardial cells, with action potential curve modeling. This study assessed cardiac ion channel inhibition data combinations to consider when undertaking in silico modeling of proarrhythmic effects as stipulated in the Comprehensive in Vitro Proarrhythmia Assay (CiPA). As expected, our data highlight the importance of the delayed rectifier potassium channel (IKr) as the most impactful channel for APD prolongation. The impact of the transient outward potassium channel (Ito) inhibition on APD was minimal while the inward rectifier (IK1) and slow component of the delayed rectifier potassium channel (IKs) also had limited APD effects. In contrast, the contribution of fast sodium channel (INa) and/or L-type calcium channel (ICa) inhibition resulted in substantial APD alterations supporting the pharmacological relevance of in silico modeling using input from a limited number of cardiac ion channels including IKr, INa, and ICa, at least at an early stage of drug development.

2.
J Pharmacol Toxicol Methods ; 123: 107300, 2023.
Article in English | MEDLINE | ID: mdl-37524151

ABSTRACT

This editorial prefaces the annual themed issue on safety pharmacology (SP) methods published since 2004 in the Journal of Pharmacological and Toxicological Methods (JPTM). We highlight here the content derived from the recent 2022 Safety Pharmacology Society (SPS) and Canadian Society of Pharmacology and Therapeutics (CSPT) joint meeting held in Montreal, Quebec, Canada. The meeting also generated 179 abstracts (reproduced in the current volume of JPTM). As in previous years the manuscripts reflect various areas of innovation in SP including a comparison of the sensitivity of cross-over and parallel study designs for QTc assessment, use of human-induced pluripotent stem cell (hi-PSC) neuronal cell preparations for use in neuropharmacological safety screening, and hiPSC derived cardiac myocytes in assessing inotropic adversity. With respect to the latter, we anticipate the emergence of a large data set of positive and negative controls that will test whether the imperative to miniaturize, humanize and create a high throughput process is offset by any loss of precision and accuracy.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Pharmacology , Humans , Canada , Drug Evaluation, Preclinical/methods , Drug-Related Side Effects and Adverse Reactions/prevention & control , Pharmacology/methods , Congresses as Topic
3.
J Pharmacol Toxicol Methods ; 117: 107206, 2022.
Article in English | MEDLINE | ID: mdl-35926772

ABSTRACT

The 2021 Annual Safety Pharmacology (SP) Society (SPS) meeting was held virtually October 4-8, 2021 due to the continuing COVID-19 global pandemic. This themed issue of J Pharmacol Toxicol Methods comprises articles arising from the meeting. As in previous years the manuscripts reflect various areas of innovation in SP including a perspective on aging and its impact on drug attrition during safety assessments, an integrated assessment of respiratory, cardiovascular and animal activity of in vivo nonclinical studies, development of a dynamic QT-rate correction method in primates, evaluation of the "comprehensive in vitro proarrhythmia assay" (CiPA) ion channel protocol to the automated patch clamp, and best practices regarding the conduct of hERG electrophysiology studies and an analysis of secondary pharmacology assays by the FDA. The meeting also generated 85 abstracts (reproduced in the current volume of J Pharmacol Toxicol Methods). It appears that the validation of methods remains a challenge in SP. Nevertheless, the continued efforts to mine approaches to detection of proarrhythmia liability remains a baffling obsession given the ability of Industry to completely prevent drugs entering into clinical study only to be found to have proarrhythmic properties, with no reports of such for at least ten years. Perhaps it is time to move on from CiPA and find genuine problems to solve?


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Animals , Drug Evaluation, Preclinical/methods , Indoles , Ion Channels , Propionates
4.
Int J Toxicol ; 40(6): 487-505, 2021 12.
Article in English | MEDLINE | ID: mdl-34569357

ABSTRACT

The growth in drug development over the past years reflects significant advancements in basic sciences and a greater understanding of molecular pathways of disease. Benchmarking industry practices has been important to enable a critical reflection on the path to evolve pharmaceutical testing, and the outcome of past industry surveys has had some impact on best practices in testing. A survey was provided to members of SPS, ACT, and STP. The survey consisted of 37 questions and was provided to 2550 participants with a response rate of 24%. Most respondents (∼75%) came from the US and Europe. The survey encompassed multiple topics encountered in nonclinical testing of pharmaceuticals. The most frequent target indications were oncology (69%), inflammation (55%), neurology/psychiatry/pain (46%), cardiovascular (44%), and metabolic diseases (39%). The most frequent drug-induced toxicology issues confronted were hepatic, hematopoietic, and gastrointestinal. Toxicological effects that impacted the no observed adverse effect level (NOAEL) were most frequently based on histopathology findings. The survey comprised topics encountered in the use of biomarkers in nonclinical safety assessment, most commonly those used to assess inflammation, cardiac/vascular, renal, and hepatic toxicity as well as common practices related to the assessment of endocrine effects, carcinogenicity, genotoxicity, juvenile and male-mediated developmental and female reproductive toxicity. The survey explored the impact of regulatory meetings on program design, application of the 3 Rs, and reasons for program delays. Overall, the survey results provide a broad perspective of current practices based on the experience of the scientific community engaged in nonclinical safety assessment.


Subject(s)
Drug Evaluation, Preclinical/standards , Drug Industry/standards , Drug Industry/trends , Guidelines as Topic , Pharmaceutical Preparations/standards , Toxicity Tests/standards , Toxicity Tests/trends , Drug Evaluation, Preclinical/methods , Drug Industry/methods , Forecasting , Humans , Surveys and Questionnaires , Toxicity Tests/methods , United States
5.
Int J Toxicol ; 39(4): 274-293, 2020.
Article in English | MEDLINE | ID: mdl-32406289

ABSTRACT

INTRODUCTION: The Safety Pharmacology Society (SPS) conducted a membership survey to examine industry practices related mainly to cardiovascular (CV) safety pharmacology (SP). METHODS: Questions addressed nonclinical study design, data analysis methods, drug-induced effects, and conventional and novel CV assays. RESULTS: The most frequent therapeutic area targeted by drugs developed by the companies/institutions that employ survey responders was oncology. The most frequently observed drug-mediated effects included an increased heart rate, increased arterial blood pressure, hERG (IKr) block, decreased arterial blood pressure, decreased heart rate, QTc prolongation, and changes in body temperature. Broadly implemented study practices included Latin square crossover study design with n = 4 for nonrodent CV studies, statistical analysis of data (eg, analysis of variance), use of arrhythmia detection software, and the inclusion of data from all study animals when integrating SP studies into toxicology studies. Most responders frequently used individual animal housing conditions. Responders commonly evaluated drug effects on multiple ion channels, but in silico modeling methods were used much less frequently. Most responders rarely measured the J-Tpeak interval in CV studies. Uncertainties relative to Standard for Exchange of Nonclinical Data applications for data derived from CV SP studies were common. Although available, the use of human induced pluripotent stem cell cardiomyocytes remains rare. The respiratory SP study was rarely involved with identifying drug-induced functional issues. Responders indicated that the study-derived no observed effect level was more frequently determined than the no observed adverse effect level in CV SP studies; however, a large proportion of survey responders used neither.


Subject(s)
Cardiovascular Diseases/chemically induced , Drug Evaluation, Preclinical/methods , Drug-Related Side Effects and Adverse Reactions , Pharmacology/methods , Animals , Cardiovascular System , Data Interpretation, Statistical , Drug Industry , Humans , Research Design , Surveys and Questionnaires
6.
Regul Toxicol Pharmacol ; 113: 104624, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32126256

ABSTRACT

An international expert working group representing 37 organisations (pharmaceutical/biotechnology companies, contract research organisations, academic institutions and regulatory bodies) collaborated in a data sharing exercise to evaluate the utility of two species within regulatory general toxicology studies. Anonymised data on 172 drug candidates (92 small molecules, 46 monoclonal antibodies, 15 recombinant proteins, 13 synthetic peptides and 6 antibody-drug conjugates) were submitted by 18 organisations. The use of one or two species across molecule types, the frequency for reduction to a single species within the package of general toxicology studies, and a comparison of target organ toxicities identified in each species in both short and longer-term studies were determined. Reduction to a single species for longer-term toxicity studies, as used for the development of biologicals (ICHS6(R1) guideline) was only applied for 8/133 drug candidates, but might have been possible for more, regardless of drug modality, as similar target organ toxicity profiles were identified in the short-term studies. However, definition and harmonisation around the criteria for similarity of toxicity profiles is needed to enable wider consideration of these principles. Analysis of a more robust dataset would be required to provide clear, evidence-based recommendations for expansion of these principles to small molecules or other modalities where two species toxicity testing is currently recommended.


Subject(s)
Drug Development , Drug Evaluation, Preclinical/adverse effects , Toxicity Tests , Animals , Databases, Factual , Humans , Risk Assessment
7.
J Pharmacol Toxicol Methods ; 98: 106593, 2019.
Article in English | MEDLINE | ID: mdl-31158459

ABSTRACT

This commentary highlights and expands upon the thoughts conveyed in the lecture by Dr. Alan S. Bass, recipient of the 2017 Distinguished Service Award from the Safety Pharmacology Society, given on 27 September 2017 in Berlin, Germany. The lecture discussed the societal, scientific, technological, regulatory and economic events that dramatically impacted the pharmaceutical industry and ultimately led to significant changes in the strategic operations and practices of safety pharmacology. It focused on the emerging challenges and opportunities, and considered the lessons learned from drug failures and the influences of world events, including the financial crisis that ultimately led to a collapse of the world economies from which we are now recovering. Events such as these, which continue to today, challenge the assumptions that form the foundation of our discipline and dramatically affect the way that safety pharmacology is practiced. These include the latest scientific and technological developments contributing to the design and advancement of safe medicines. More broadly, they reflect the philosophical mission of safety pharmacology and the roles and responsibilities served by safety pharmacologists. As the discipline of Safety Pharmacology continues to evolve, develop and mature, the reader is invited to reflect on past experiences as a framework towards a vision of the future of the field.


Subject(s)
Drug Evaluation, Preclinical/methods , Drug Industry/methods , Drug-Related Side Effects and Adverse Reactions/prevention & control , Animals , Humans , Societies
8.
J Pharmacol Toxicol Methods ; 98: 106579, 2019.
Article in English | MEDLINE | ID: mdl-31085319

ABSTRACT

This meeting report is based on presentations given at the first Drug Safety Africa Meeting in Potchefstroom, South Africa from November 20-22, 2018 at the North-West University campus. There were 134 attendees (including 26 speakers and 34 students) from the pharmaceutical industry, academia, regulatory agencies as well as 6 exhibitors. These meeting proceedings are designed to inform the content that was presented in terms of Safety Pharmacology (SP) and Toxicology methods and models that are used by the pharmaceutical industry to characterize the safety profile of novel small chemical or biological molecules. The first part of this report includes an overview of the core battery studies defined by cardiovascular, central nervous system (CNS) and respiratory studies. Approaches to evaluating drug effects on the renal and gastrointestinal systems and murine phenotyping were also discussed. Subsequently, toxicological approaches were presented including standard strategies and options for early identification and characterization of risks associated with a novel therapeutic, the types of toxicology studies conducted and relevance to risk assessment supporting first-in-human (FIH) clinical trials and target organ toxicity. Biopharmaceutical development and principles of immunotoxicology were discussed as well as emerging technologies. An additional poster session was held that included 18 posters on advanced studies and topics by South African researchers, postgraduate students and postdoctoral fellows.


Subject(s)
Biological Products/toxicity , Drug Industry/methods , Drug-Related Side Effects and Adverse Reactions/prevention & control , Risk Assessment/methods , Animals , Drug Evaluation, Preclinical/methods , Humans , Pharmacology/methods , South Africa , Toxicology/methods
9.
Int J Toxicol ; 38(1): 23-32, 2019.
Article in English | MEDLINE | ID: mdl-30567462

ABSTRACT

INTRODUCTION: Based on the ICH S7B and E14 guidance documents, QT interval (QTc) is used as the primary in vivo biomarker to assess the risk of drug-induced torsades de pointes (TdP). Clinical and nonclinical data suggest that drugs that prolong the corrected QTc with balanced multiple ion channel inhibition (most importantly the l-type calcium, Cav1.2, and persistent or late inward sodium current, Nav1.5, in addition to human Ether-à-go-go-Related Gene [hERG] IKr or Kv11.1) may have limited proarrhythmic liability. The heart rate-corrected J to T-peak (JTpc) measurement in particular may be considered to discriminate selective hERG blockers from multi-ion channel blockers. METHODS: Telemetry data from Beagle dogs given dofetilide (0.3 mg/kg), sotalol (32 mg/kg), and verapamil (30 mg/kg) orally and Cynomolgus monkeys given medetomidine (0.4 mg/kg) orally were retrospectively analyzed for effects on QTca, JTpca, and T-peak to T-end covariate adjusted (Tpeca) interval using individual rate correction and super intervals (calculated from 0-6, 6-12, 12-18, and 18-24 hours postdose). RESULTS: Dofetilide and cisapride (IKr or Kv11.1 blockers) were associated with significant increases in QTca and JTpca, while sotalol was associated with significant increases in QTca, JTpca, and Tpeca. Verapamil (a Kv11.1 and Cav1.2 blocker) resulted in a reduction in QTca and JTpca, however, and increased Tpeca. Medetomidine was associated with a reduction in Tpeca and increase in JTpca. DISCUSSION: Results from this limited retrospective electrocardiogram analysis suggest that JTpca and Tpeca may discriminate selective IKr blockers and multichannel blockers and could be considered in the context of an integrated comprehensive proarrhythmic risk assessment.


Subject(s)
Calcium Channel Blockers/pharmacology , Electrocardiography/drug effects , Heart Rate/drug effects , Potassium Channel Blockers/pharmacology , Sodium Channel Blockers/pharmacology , Animals , Biomarkers , Cisapride/pharmacology , Dogs , Drug Evaluation, Preclinical , Long QT Syndrome/chemically induced , Macaca fascicularis , Male , Medetomidine/pharmacology , Phenethylamines/pharmacology , Sotalol/pharmacology , Sulfonamides/pharmacology , Telemetry , Verapamil/pharmacology
11.
J Pharmacol Toxicol Methods ; 87: 1-6, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28461240

ABSTRACT

This editorial prefaces the annual themed issue on safety pharmacology (SP) methods published in the Journal of Pharmacological and Toxicological Methods (JPTM). We highlight here the content derived from the recent 2016 Safety Pharmacology Society (SPS), Canadian Society of Pharmacology and Therapeutics (CSPT), and Japanese Safety Pharmacology Society (JSPS) joint meeting held in Vancouver, B.C., Canada. This issue of JPTM continues the tradition of providing a publication summary of articles primarily presented at the joint meeting with direct bearing on the discipline of SP. As the regulatory landscape is expected to evolve with revision announced for the existing guidance document on non-clinical proarrhythmia risk assessment (ICHS7B) there is also imminent inception of the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative. Thus, the field of SP is dynamically progressing with characterization and implementation of numerous alternative non-clinical safety models. Novel method development and refinement in all areas of the discipline are reflected in the content.


Subject(s)
Congresses as Topic/standards , Drug-Related Side Effects and Adverse Reactions/prevention & control , Pharmacology/standards , Animals , Canada/epidemiology , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Drug-Related Side Effects and Adverse Reactions/epidemiology , Humans , Japan/epidemiology , Pharmacology/methods , Societies, Pharmaceutical/standards
12.
J Pharmacol Toxicol Methods ; 87: 11-23, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28408211

ABSTRACT

Voltage gated ion channels are central in defining the fundamental properties of the ventricular cardiac action potential (AP), and are also involved in the development of drug-induced arrhythmias. Many drugs can inhibit cardiac ion currents, including the Na+ current (INa), L-type Ca2+ current (Ica-L), and K+ currents (Ito, IK1, IKs, and IKr), and thereby affect AP properties in a manner that can trigger or sustain cardiac arrhythmias. Since publication of ICH E14 and S7B over a decade ago, there has been a focus on drug effects on QT prolongation clinically, and on the rapidly activating delayed rectifier current (IKr), nonclinically, for evaluation of proarrhythmic risk. This focus on QT interval prolongation and a single ionic current likely impacted negatively some drugs that lack proarrhythmic liability in humans. To rectify this issue, the Comprehensive in vitro proarrhythmia assay (CiPA) initiative has been proposed to integrate drug effects on multiple cardiac ionic currents with in silico modelling of human ventricular action potentials, and in vitro data obtained from human stem cell-derived ventricular cardiomyocytes to estimate proarrhythmic risk of new drugs with improved accuracy. In this review, we present the physiological functions and the molecular basis of major cardiac ion channels that contribute to the ventricle AP, and discuss the CiPA paradigm in drug development.


Subject(s)
Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Cardiotoxins/pharmacology , Ion Channels/physiology , Pharmacology/methods , Animals , Cardiotoxins/adverse effects , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Heart Conduction System/drug effects , Heart Conduction System/physiology , Humans , Ion Channels/agonists , Ion Channels/antagonists & inhibitors , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Pharmacology/standards
14.
Article in English | MEDLINE | ID: mdl-28065821

ABSTRACT

INTRODUCTION: The importance of drug-induced effects on the inotropic state of the heart is well known. Unlike hemodynamic and cardiac electrophysiological methods, which have been routinely used in drug safety testing for years, the non-clinical assessment of drug effects on myocardial contractility is used less frequently with no established translation to humans. The goal of these studies was to determine whether assessment of alternate measures of cardiac inotropy could detect drug-induced changes in the contractile state of the heart using drugs known to have clinically relevant positive and negative effects on myocardial contractility. This study also evaluated drug-induced effects on lusitropy (relaxation) parameters of the heart. METHODS: A double 4×4 Latin square study design using Beagle dogs (n=8) was conducted. Drugs were administrated orally. Arterial blood pressure (BP), left ventricular pressure (LVP) and the electrocardiogram (ECG) were assessed across different laboratories using the same protocol. Each of the six laboratories studied at least 2 drugs (one positive inotrope (pimobendan or amrinone) and one negative inotrope (itraconazole or atenolol) at 3 doses selected to match clinical exposure data and a vehicle control). Animals were instrumented with an ITS telemetry system or DSI's D70-PCTP or PhysioTel™ Digital system. The data acquisition and analysis systems used were Ponemah, Notocord or EMKA. RESULTS: The derived inotropic and lusitropic parameters evaluated included peak systolic and end diastolic LVP, LVdP/dtmax, LVdP/dt40, QA interval, LVdP/dtmin and Tau. This study showed that LVdP/dt40 provided essentially identical results to LVdP/dtmax qualifying it as an index to assess drug effects on cardiac contractility. LVdP/dt40 provided an essentially identical assessment to that of LVdP/dtmax. The QA interval did not react sensitively to the drugs tested in this study; however, it did detect large effects and could be useful in early cardiovascular safety studies. The lusitropic parameter, LVdP/dtmin, was modestly decreased, and Tau was increased, by atenolol and itraconazole. At the doses tested, amrinone and pimobendan produced no changes in LVdP/dtmin while Tau was modestly increased. The drugs did not produce effects on BP, HR or the ECG at the doses tested. Blood samples were drawn to confirm drug exposures predicted from independent pharmacokinetic studies. DISCUSSION: These findings indicate that this experimental model can accurately and consistently detect changes in cardiac contractility, across multiple sites and instrumentation systems. While LVdP/dt40 produced responses similar to LVdP/dtmax, the QA interval and lusitropic parameters LVdP/dtmin and Tau were not markedly changed at the dose of drugs tested. Further studies with drugs that affect early diastolic relaxation through calcium handling are needed to better evaluate drug-induced changes on lusitropic properties of the heart.


Subject(s)
Cardiotonic Agents/pharmacology , Heart Rate/physiology , Myocardial Contraction/physiology , Ventricular Function, Left/physiology , tau Proteins/blood , Animals , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Female , Heart Rate/drug effects , Hemodynamics/physiology , Itraconazole/pharmacology , Male , Myocardial Contraction/drug effects , Ventricular Function, Left/drug effects
15.
Article in English | MEDLINE | ID: mdl-27913272

ABSTRACT

The Safety Pharmacology Society (SPS) held a Northeast (NE) regional meeting in Boston, MA on May 13, 2016 at the Vertex Pharmaceuticals Incorporated site. There were 103 attendees from the pharmaceutical industry, contract research organizations (CROs), academia, and global regulatory agencies. An assortment of scientific topics were presented by 7 speakers that included broad topics in the cardiovascular (organ on chip, statistical power and translation of rat cardiovascular telemetry data and dual inhibition of IKr and IKs on QT interval prolongation) and central nervous system (in vitro platform for neurotoxicity, an integrated risk assessment of suicidal ideation and behavior, and EEG advances in safety pharmacology) and a novel topic discussing preclinical challenges faced in the development of a novel gene therapy. A highlight of the meeting was an in-depth discussion on the fatty acid acyl hydrolase (FAAH) inhibitor BIA 10-2474 which involved a comprehensive overview of the biology and pharmacology of FAAH followed by a presentation from the Biotrial (Rennes, France) team that conducted the clinical trial. An additional poster session was held that included 13 fascinating posters on cutting edge safety pharmacology topics.


Subject(s)
Congresses as Topic/trends , Drug Industry/trends , Inventions/trends , Societies, Pharmaceutical/trends , Animals , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/trends , Drug Industry/methods , Drug-Related Side Effects and Adverse Reactions/prevention & control , Humans
16.
Article in English | MEDLINE | ID: mdl-27343819

ABSTRACT

Safety pharmacology (SP) has evolved in terms of architecture and content since the inception of the SP Society (SPS). SP was initially focused on the issue of drug-induced QT prolongation, but has now become a broad spectrum discipline with expanding expectations for evaluation of drug adverse effect liability in all organ systems, not merely the narrow consideration of torsades de pointes (TdP) liability testing. An important part of the evolution of SP has been the elaboration of architecture for interrogation of non-clinical models in terms of model development, model validation and model implementation. While SP has been defined by mandatory cardiovascular, central nervous system (CNS) and respiratory system studies ever since the core battery was elaborated, it also involves evaluation of drug effects on other physiological systems. The current state of SP evolution is the incorporation of emerging new technologies in a wide range of non-clinical drug safety testing models. This will refine the SP process, while potentially expanding the core battery. The continued refinement of automated technologies (e.g., automated patch clamp systems) is enhancing the scope for detection of adverse effect liability (i.e., for more than just IKr blockade), while introducing a potential for speed and accuracy in cardiovascular and CNS SP by providing rapid, high throughput ion channel screening methods for implementation in early drug development. A variety of CNS liability assays, which exploit isolated brain tissue, and in vitro electrophysiological techniques, have provided an additional level of complimentary preclinical safety screens aimed at establishing the seizurogenic potential and risk for memory dysfunction of new chemical entities (NCEs). As with previous editorials that preface the annual themed issue on SP methods published in the Journal of Pharmacological and Toxicological Methods (JPTM), we highlight here the content derived from the most recent (2015) SPS meeting held in Prague, Czech Republic. This issue of JPTM continues the tradition of providing a publication summary of articles primarily presented at the SPS meeting with direct bearing on the discipline of SP. Novel method development and refinement in all areas of the discipline are reflected in the content.


Subject(s)
Legislation, Drug/trends , Pharmacology/legislation & jurisprudence , Pharmacology/standards , Safety/legislation & jurisprudence , Safety/standards , Animals , Arrhythmias, Cardiac/chemically induced , Calibration , Computer Simulation , Drug Evaluation, Preclinical , Drug-Related Side Effects and Adverse Reactions , Humans , In Vitro Techniques , Torsades de Pointes/chemically induced
17.
Article in English | MEDLINE | ID: mdl-27263834

ABSTRACT

The Safety Pharmacology Society (SPS) conducted an industry survey in 2015 to identify industry practices as they relate to central, peripheral and autonomic nervous system ('CNS') drug safety testing. One hundred fifty-eight (158) participants from Asia (16%), Europe (20%) and North America (56%) responded to the survey. 52% of participants were from pharmaceutical companies (>1000 employees). Oncology (67%) and neurology/psychiatry (66%) were the most frequent target indications pursued by companies followed by inflammation (48%), cardiovascular (43%), metabolic (39%), infectious (37%), orphan (32%) and respiratory (29%) diseases. Seizures (67% of participants), gait abnormalities (67%), tremors (65%), emesis (56%), sedation (52%) and salivation (47%) were the most commonly encountered CNS issues in pre-clinical drug development while headache (65%), emesis/nausea (60%), fatigue (51%) and dizziness (49%) were the most frequent issues encountered in Phase I clinical trials. 54% of respondents reported that a standard battery of tests applied to screen drug candidates was the approach most commonly used to address non-clinical CNS safety testing. A minority (14% of all participants) reported using electroencephalography (EEG) screening prior to animal inclusion on toxicology studies. The most frequent group size was n=8 for functional observation battery (FOB), polysomnography and seizure liability studies. FOB evaluations were conducted in a dedicated room (78%) by blinded personnel (66%) with control for circadian cycle (55%) effects (e.g., dosing at a standardized time; balancing time of day across treatment groups). The rat was reported as the most common species used for seizure liability, nerve conduction and drug-abuse liability testing.


Subject(s)
Drug Industry/statistics & numerical data , Drug-Related Side Effects and Adverse Reactions , Nervous System Diseases/chemically induced , Aging , Animals , Behavior, Animal/drug effects , Drug Evaluation, Preclinical , Electroencephalography/drug effects , Humans , Mice , Nervous System Diseases/epidemiology , Neural Conduction/drug effects , Rats , Safety , Seizures/chemically induced , Sleep/drug effects , Substance-Related Disorders , Surveys and Questionnaires
18.
Article in English | MEDLINE | ID: mdl-27058269

ABSTRACT

Adverse CNS effects account for a sizeable proportion of all drug attrition cases. These adverse CNS effects are mediated predominately by off-target drug activity on neuronal ion-channels, receptors, transporters and enzymes - altering neuronal function and network communication. In response to these concerns, there is growing support within the pharmaceutical industry for the requirement to perform more comprehensive CNS safety testing prior to first-in-human trials. Accordingly, CNS safety pharmacology commonly integrates several in vitro assay methods for screening neuronal targets in order to properly assess therapeutic safety. One essential assay method is the in vitro electrophysiological technique - the 'gold standard' ion channel assay. The in vitro electrophysiological method is a useful technique, amenable to a variety of different tissues and cell configurations, capable of assessing minute changes in ion channel activity from the level of a single receptor to a complex neuronal network. Recent advances in automated technology have further expanded the usefulness of in vitro electrophysiological methods into the realm of high-throughput, addressing the bottleneck imposed by the manual conduct of the technique. However, despite a large range of applications, manual and automated in vitro electrophysiological techniques have had a slow penetrance into the field of safety pharmacology. Nevertheless, developments in throughput capabilities and in vivo applicability have led to a renewed interest in in vitro electrophysiological techniques that, when complimented by more traditional safety pharmacology methods, often increase the preclinical predictability of potential CNS liabilities.


Subject(s)
Central Nervous System Diseases/chemically induced , Central Nervous System/drug effects , Electrophysiological Phenomena/drug effects , Animals , Drug Evaluation, Preclinical/methods , Drug-Related Side Effects and Adverse Reactions , Electroencephalography/drug effects , Humans , Models, Biological , Safety , Seizures/chemically induced
19.
Handb Exp Pharmacol ; 229: v, 2015.
Article in English | MEDLINE | ID: mdl-26307815
20.
Article in English | MEDLINE | ID: mdl-26055120

ABSTRACT

The relative importance of the discipline of safety pharmacology (which integrates physiology, pharmacologyand toxicology) has evolved since the incorporation of the Safety Pharmacology Society (SPS) as an entity on August 10, 2000. Safety pharmacology (SP), as a synthesis of these other fields of knowledge, is concerned with characterizing the safety profile (or potential undesirable pharmacodynamic effects) of new chemical entities (NCEs) and biologicals. Initially focused on the issue of drug-induced QT prolongation it has developed into an important discipline over the past 15years with expertise beyond its initial focus on torsades de pointes (TdP). It has become a repository for interrogation of models for drug safety studies and innovative non-clinical model development, validation and implementation. Thus, while safety pharmacology consists of the triumvirate obligatory cardiovascular, central nervous system (CNS) and respiratory system core battery studies it also involves assessing drug effects on numerous other physiological systems (e.g., ocular, auditory, renal, gastrointestinal, blood, immune) leveraging emerging new technologies in a wide range of non-clinical drug safety testing models. As with previous editorials that preface the themed issue on safety pharmacology methods published in the Journal of Pharmacological and Toxicological Methods (JPTM), we highlight here the content derived from the most recent (2014) SPS meeting held in Washington, DC. The dynamics of the discipline remain fervent and method development, extension and refinement are reflected in the content. This issue of the JPTM continues the tradition of providing a publication summary of articles (reviews, commentaries and methods) with impact on the discipline of safety pharmacology.


Subject(s)
Drug Evaluation, Preclinical/methods , Drug-Related Side Effects and Adverse Reactions , Pharmacology/organization & administration , Animals , Humans , Models, Theoretical , Toxicology/organization & administration
SELECTION OF CITATIONS
SEARCH DETAIL