Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Antiviral Res ; 154: 104-109, 2018 06.
Article in English | MEDLINE | ID: mdl-29665374

ABSTRACT

Dengue is a mosquito-borne disease of global public health importance caused by four genetically and serologically related viruses (DENV-1 to DENV-4). Efforts to develop effective vaccines and therapeutics for dengue have been slowed by the paucity of preclinical models that mimic human disease. DENV-2 models in interferon receptor deficient AG129 mice were an important advance but only allowed testing against a single DENV serotype. We have developed complementary AG129 mouse models of severe disseminated dengue infection using strains of the other three DENV serotypes. Here we used the adenosine nucleoside inhibitor NITD-008 to show that these models provide the ability to perform comparative preclinical efficacy testing of candidate antivirals in vivo against the full-spectrum of DENV serotypes. Although NITD-008 was effective in modulating disease caused by all DENV serotypes, the variability in protection among DENV serotypes was greater than expected from differences in activity in in vitro testing studies emphasizing the need to undertake spectrum of activity testing to help in prioritization of candidate compounds for further development.


Subject(s)
Antiviral Agents/therapeutic use , Dengue Virus/drug effects , Disease Models, Animal , Nucleic Acid Synthesis Inhibitors/therapeutic use , Severe Dengue/drug therapy , Adenosine/chemistry , Animals , Drug Evaluation, Preclinical , Mice , Nucleic Acid Synthesis Inhibitors/pharmacology , Proof of Concept Study , Serogroup
2.
Antiviral Res ; 67(2): 76-82, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15927278

ABSTRACT

We describe a phased screening system for discovery of compounds with antiviral activity against hepatitis C virus (HCV). The primary assay utilizes dicistronic subgenomic HCV replicons in which the upstream cistron was modified to express the human immunodeficiency virus (HIV) tat protein. When these replicons are stably transfected into Huh-7-derived cells that express secreted alkaline phosphatase (SEAP) under transcriptional control of the HIV long terminal repeat promoter, there is a strong correlation between intracellular HCV RNA abundance and the activity of SEAP secreted into the culture medium. Thus, active compounds are easily identified by direct enzymatic quantification of SEAP in the medium without post-assay processing. Compounds that reduce SEAP activity without causing cellular toxicity are next evaluated in a second Huh-7-derived cell line constitutively expressing SEAP under control of the tat-HIV promoter axis, independent of HCV RNA replication. This specificity control identifies compounds that cause reductions in SEAP that are unrelated to suppression of HCV RNA replication. Compounds showing HCV-specific activity in primary assays are next evaluated by real-time RT-PCR to directly quantify reductions in HCV RNA. We have found excellent agreement between the SEAP and RT-PCR assays. This phased system provides an efficient and cost-effective screen for compounds with antiviral activity against HCV.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Virus Replication/drug effects , Alkaline Phosphatase/genetics , Cell Line , Drug Evaluation, Preclinical , Genes, Reporter , Hepacivirus/physiology , Microbial Sensitivity Tests , RNA, Viral/biosynthesis , Replicon/drug effects
3.
J Virol ; 76(22): 11387-96, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12388699

ABSTRACT

Synthetic oligonucleotides containing CpG motifs in specific sequence contexts have been shown to induce potent immune responses. We have evaluated mucosal administration of two immunostimulatory sequence (ISS)-containing phosphorothioate-stabilized oligonucleotides for antiherpetic efficacy in animal models. The ISS oligonucleotides, suspended in phosphate-buffered saline, were tested in mouse and guinea pig vaginal models of herpes simplex virus type 2 (HSV-2) infection. For comparison, groups of untreated, non-ISS oligonucleotide-treated, and acyclovir-treated animals also were monitored. The results indicated that vaginal epithelial application of ISS (up to 6 h after viral inoculation) with mice lethally challenged with HSV-2 delayed disease onset and reduced the number of animals that developed signs of disease (P = 0.003). ISS application significantly increased survival rates over those of controls (P = 0.0014). The ISS also impacted an established infection in the guinea pig model of HSV-2 disease. A single administration of ISS (21 days after viral inoculation) significantly reduced the frequency and severity of HSV-2 lesions compared to results with non-ISS oligonucleotide-treated and untreated guinea pigs (P < 0.01). HSV-2 is shed from the vaginal cavity of the guinea pig in the absence of lesions, similar to the case with humans. As an additional indication of ISS efficacy, the magnitude of viral shedding also was significantly reduced in ISS-treated animals (P < 0.001). These effects appeared to be immunologically mediated, since ISS had no direct effect on HSV-2 replication in vitro using standard plaque assays. These data suggest that ISS may be useful in the treatment and control of genital herpes in humans.


Subject(s)
Administration, Intravaginal , Antiviral Agents/therapeutic use , Herpes Genitalis/drug therapy , Herpesvirus 2, Human/drug effects , Oligonucleotides/therapeutic use , Acyclovir/therapeutic use , Adjuvants, Immunologic , Animals , Antiviral Agents/chemistry , Antiviral Agents/immunology , Base Sequence , Chlorocebus aethiops , Disease Models, Animal , Female , Guinea Pigs , Herpes Genitalis/prevention & control , Humans , Mice , Microbial Sensitivity Tests , Oligonucleotides/chemistry , Oligonucleotides/immunology , Treatment Outcome , Vero Cells , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL