Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Affiliation country
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1429-1437, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621926

ABSTRACT

This study aims to explore the mechanism of aqueous extract of Strychni Semen(SA) in relieving pain in the rat model of rheumatoid arthritis(RA) via Toll-like receptor 4(TLR4)/tumor necrosis factor-α(TNF-α)/matrix metalloproteinase-9(MMP-9) signaling pathway. Firstly, the main chemical components of Strychni Semen were searched against TCMSP, TCMID, ETCM, and related literature, and the main targets of the chemical components were retrieved from TargetNet and SwissTargetPrediction. The main targets of RA and pain were searched against GeneCards, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD). Venny 2.1.0 was used to obtain the common targets shared by Strychni Semen, RA, and pain, and STRING and Cytoscape 3.6.1 were used to build the protein-protein interaction network. Then, molecular docking was carried out in AutoDock Vina. Finally, the rat model of type Ⅱ collagen-induced arthritis(CIA) was established. The up-down method and acetone method were employed to examine the mechanical pain threshold and cold pain threshold of rats, and the pain-relieving effect of SA on CIA rats was evaluated comprehensively. Hematoxylin-eosin(HE) staining was employed to evaluate the histopathological changes of joints in CIA rats. The expression levels of key target proteins was determined by immunohistochemistry and Western blot, and the mRNA levels of key targets were determined by real-time fluorescence quantitative polymerase chain reaction(real-time PCR). The results of network prediction showed that Strychni Semen may act on the TLR4/TNF-α/MMP-9 signaling pathway to exert the pain-relieving effect. The results of molecular docking showed that brucine, the main active component of SA, had strong binding ability to TLR4, TNF-α, and MMP-9. The results of animal experiments showed that SA improved the mechanical and cold pain sensitivity(P<0.05, P<0.01) and reduced the joint histopathological score of CIA rats(P<0.01). In addition, medium and high doses of SA down-regulated the protein and mRNA levels of TNF-α, TLR4, and MMP-9(P<0.05,P<0.01). In conclusion, SA alleviated the mechanical pain sensitivity, cold pain sensitivity, and joint histopathological changes in CIA rats by inhibiting the over activation of TLR4/TNF-α/MMP-9 signaling pathway.


Subject(s)
Arthritis, Rheumatoid , Tumor Necrosis Factor-alpha , Humans , Rats , Animals , Tumor Necrosis Factor-alpha/genetics , Matrix Metalloproteinase 9/genetics , Semen , Molecular Docking Simulation , Toll-Like Receptor 4/genetics , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Signal Transduction , Pain/drug therapy , RNA, Messenger
2.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5327-5335, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36472040

ABSTRACT

Based on the network pharmacology, molecular docking, and animal experiment, this study explored the anti-rheumatoid arthritis(RA) mechanism of Sophorae Tonkinesis Radix et Rhizoma(STRR). The active components of STRR were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), Traditional Chinese Medicine Integrative Database(TCMID), and previous research, main targets of STRR from TCMSP and SwissTargetPrediction, and targets of RA from GeneCards, DrugBank, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD). The common targets of the two were screened by Venny 2.1.0. Cytoscape 3.6.0 was used to generate the "component-target" network, and STRING and Cytoscape were used to construct the protein-protein interaction(PPI) network. DAVID 6.8 was employed for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment, and AutoDock Vina for molecular docking. Finally, collagen-induced rheumatoid arthritis(CIA) mouse model was constructed, and the expression of core target proteins was detected by Western blot. A total of 27 active components, including quercetin, genistein, kaempferol, subprogenin C, and daidzein, and 154 anti-RA targets, such as signal transducer and activator of transcription 3(STAT3), tumor necrosis factor(TNF), mitogen-activated protein kinase 1(MAPK1), AP-1 transcription factor subunit(JUN), and interleukin 6(IL6), of STRR were screened out. It was preliminarily indicated that STRR may regulate phosphatidylinositol-3-kinase-protein kinase B(PI3 K-AKT) signaling pathway and TNF signaling pathway to modulate the positive regulation of RNA polymerase Ⅱ promoter transcription, inflammatory response, and other biological processes, thus exerting the anti-RA effect. The results of molecular docking showed that the main active components in STRR had high binding affinity to the core targets. Animal experiment suggested that the water extract of STRR can significantly reduce the levels of p-STAT3, p-MAPK1, and TNF. This study demonstrated the multi-component, multi-target and multi-pathway synergistic effect of STRR in the treatment of RA, laying an experimental basis for clinical application of this medicine.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Animals , Mice , Molecular Docking Simulation , Network Pharmacology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Experimental/drug therapy , Arthritis, Experimental/genetics , Tumor Necrosis Factor-alpha , Interleukin-6 , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional
3.
Zhongguo Zhong Yao Za Zhi ; 46(1): 1-5, 2021 Jan.
Article in Chinese | MEDLINE | ID: mdl-33645044

ABSTRACT

Ischemic stroke is the leading cause of death and disability in adults in China. Recent studies have shown that neutrophil extracellular traps play a crucial role in occurrence and development of ischemic stroke. This paper reviewed the literatures on NETs since the discovery of NETs more than a decade ago, and summarized the composition of NETs, the effects of NETs on stroke, the intervention targets of NETs, and the effects of traditional Chinese medicine on NETs. NETs are an important cause of brain injury after stroke. Platelets, peptidylarginine deiminase 4, reactive oxygen species and histones are the targets to regulate NET formation in stroke. There are few researches on traditional Chinese medicine targeting NETs for stroke. Studies on the intervention of traditional Chinese medicine mainly target on neutrophils, which are the main components of NETs, and platelets, which induce the formation of NETs. The paper provided a comprehensive overview of current studies of NETs in ischemic stroke, so as to provide new ideas for the treatment and drug development of ischemic stroke.


Subject(s)
Brain Ischemia , Extracellular Traps , Ischemic Stroke , Medicine, Chinese Traditional , Stroke , Adult , Brain Ischemia/drug therapy , China , Humans , Stroke/drug therapy
4.
J Ethnopharmacol ; 261: 113055, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32592887

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) has been prescribed by TCM doctors for treating psychiatric diseases with the core symptoms of anhedonia, amnesia, and dizziness. According to the symptoms of patients, KXS series formulae are created by varying the compatible ratio of herbs. Today, these formulae are still used in the clinic to treat major depressive disorders. AIM OF THE STUDY: We hoped to evaluate the antidepressant-like effect of Kai-Xin-San via regulation of the gut-brain axis. MATERIALS AND METHODS: Standardized extracts of three representative compatible ratios of KXS had been prepared, and quality control of the extracts was performed by HPLC-MS/MS. Chronic unpredictable mild stress (CUMS)-induced depression-like mice were used as the depression animal model. After KXS treatment, the antidepressant-like effects of KXS were assessed by behavioural tests. The gut microbiota compositions in the faeces were determined by 16S rRNA sequencing technology. The levels of LPS, pro-inflammatory cytokines and HPA-axis-related hormones were measured by ELISA kits, and the expression of barrier proteins in the small intestines and prefrontal cortex were determined by Western blot analysis. Furthermore, antibiotics were used to determine the correlation between KXS exerting an antidepressant-like effect and regulating the gut-brain axis. RESULTS: KXS alleviated depression-like behaviours in CUMS-exposed mice. Furthermore, these parameters were also found to be changed after KXS treatment. Alteration of the gut microbiota composition were found in the small intestines. A decrease in the LPS and the pro-inflammatory cytokines were found in both the small intestine and brain. An increase in the tight junction proteins was found in the gut epithelium barrier and the blood-brain barrier. A decrease in the stress-related hormones was found in the central nervous system. Furthermore, antibiotic treatment attenuated the antidepressant-like effect of KXS in CUMS-exposed mice. CONCLUSIONS: KXS exerted an antidepressant-like effect regulating the gut-brain axis, which included gut micro-environment modification, suppression of neuronal inflammation in the brain and inhibition of HPA axis activation in CUMS-induced depression-like mice.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Cytokines/metabolism , Depression/drug therapy , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Inflammation Mediators/metabolism , Intestine, Small/microbiology , Stress, Psychological/drug therapy , Animals , Brain/metabolism , Chronic Disease , Depression/metabolism , Depression/microbiology , Depression/psychology , Disease Models, Animal , Dysbiosis , Fluoxetine/pharmacology , Host-Pathogen Interactions , Intestine, Small/metabolism , Male , Mice, Inbred ICR , Stress, Psychological/metabolism , Stress, Psychological/microbiology , Stress, Psychological/psychology
5.
Front Pharmacol ; 10: 258, 2019.
Article in English | MEDLINE | ID: mdl-30941041

ABSTRACT

Jia-Wei-Kai-Xin-San (JWKXS) is a Chinese medicine formula applied for treating morbid forgetfulness in ancient China. Today, this formula is frequently applied for Alzheimer's disease and vascular dementia (VD) in clinic. Here, we developed it as granules and aimed to evaluate its anti-AD effect on ß amyloid protein 1-42 (Aß1-42) induced cognitive deficit mice and reveal the possible molecular mechanisms. Firstly, daily intra-gastric administration of chemically standardized of JWKXS granules for 7 days significantly ameliorated the cognitive deficit symptoms and inhibited cell apoptosis in hippocampus on Aß1-42 injection mice. JWKXS granules significantly decreased Aß level, increased superoxide dismutase activity and decreased malondialdehyde level in hippocampus of model mice. It also restored acetylcholine amounts, inhibited acetylcholinesterase activities and increased choline acetyltransferase activities. In addition, JWKXS granules enabled the transformation of precursors of NGF and BDNF into mature forms. Furthermore, JWKXS granules could regulate gene expressions related to Aß production, transportation, degradation and neurotrophic factor transformation, which led to down-regulation of Aß and up-regulation of NGF and BDNF. These findings suggested that JWKXS granules ameliorated cognitive deficit via decreasing Aß levels, protecting neuron from oxidation damages and nourishing neuron, which could serve as alternative medicine for patients suffering from AD.

6.
J Ethnopharmacol ; 224: 554-562, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-29890314

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS), an ancient formula composed of Ginseng Radix et Rhizoma, Polygalae Radix, Acori Tatarinowii Rhizoma and Poria, was frequently applied for Alzheimer's disease and major depression disorders for thousands of years. However, its active components and molecular mechanism have not clearly been investigated. AIM OF THE STUDY: We aimed to reveal the active components of KXS on regulating neurotrophic factor NGF and BDNF expressions and its mechanisms on mouse astrocyte primary cultures. MATERIALS AND METHODS: Extracts of KXS had been prepared by water reflux and chemical standardization was carried out by HPLC-MS/MS. Various ethanol elution components were prepared by eluting ethanol on macro pore resin column and compound identification was carried out by high-resolution mass spectrometry. KXS extract, elution components and identified chemicals were applied on mouse astrocytes and expressions of NGF and BDNF and related metabolic enzymes were analyzed by qPCR and western blotting analysis. RESULTS: One compatible ratio of KXS named D-652 exerted the best effect on stimulation of NGF and BDNF expressions on mouse astrocytes. 70% ethanol elution fraction of D-652 exerted the highest increase tendency on expressions of NGF and BDNF by activating cAMP-dependent signaling pathway as well as stimulating enzymes accounting for neurotrophic factor synthesis. Combined with compound identification by high-resolution mass spectrometry, ginsenoside Rg1 and Rb1 might be the active compounds of this fraction on increasing NGF and BDNF expressions. CONCLUSIONS: The active compounds of KXS on increasing NGF and BDNF expressions might be the ginsenosides via activating cAMP-dependent signaling pathway as well as stimulating enzymes accounting for neurotrophic factor synthesis, which partly reveal the target of this formulae supported the clinically usage of this decoction.


Subject(s)
Astrocytes/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Drugs, Chinese Herbal/chemistry , Nerve Growth Factor/metabolism , Phytochemicals/pharmacology , Animals , Astrocytes/metabolism , Cells, Cultured , Cyclic AMP/metabolism , Mice, Inbred ICR , Phytochemicals/isolation & purification , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL