Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256153

ABSTRACT

Tea plants have to adapt to frequently challenging environments due to their sessile lifestyle and perennial evergreen nature. Jasmonates regulate not only tea plants' responses to biotic stresses, including herbivore attack and pathogen infection, but also tolerance to abiotic stresses, such as extreme weather conditions and osmotic stress. In this review, we summarize recent progress about jasmonaic acid (JA) biosynthesis and signaling pathways, as well as the underlying mechanisms mediated by jasmontes in tea plants in responses to biotic stresses and abiotic stresses. This review provides a reference for future research on the JA signaling pathway in terms of its regulation against various stresses of tea plants. Due to the lack of a genetic transformation system, the JA pathway of tea plants is still in the preliminary stages. It is necessary to perform further efforts to identify new components involved in the JA regulatory pathway through the combination of genetic and biochemical methods.


Subject(s)
Camellia sinensis , Oxylipins , Cyclopentanes , Signal Transduction , Tea
2.
Plant Cell Environ ; 47(2): 682-697, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37882446

ABSTRACT

Quercetin is a key flavonol in tea plants (Camellia sinensis (L.) O. Kuntze) with various health benefits, and it often occurs in the form of glucosides. The roles of quercetin and its glucosylated forms in plant defense are generally not well-studied, and remain unknown in the defense of tea. Here, we found higher contents of quercetin glucosides and a decline of the aglucone upon Ectropis grisescens (E. grisescens) infestation of tea. Nine UGTs were strongly induced, among which UGT89AC1 exhibited the highest activity toward quercetin in vitro and in vivo. The mass of E. grisescens larvae that fed on plants with repressed UGT89AC1 or varieties with lower levels of UGT89AC1 was significantly lower than that of larvae fed on controls. Artificial diet supplemented with quercetin glucoside also reduced the larval growth rate, whereas artificial diet supplemented with free quercetin had no significant effect on larval growth. UGT89AC1 was located in both the cytoplasm and nucleus, and its expression was modulated by JA, JA-ILE, and MeJA. These findings demonstrate that quercetin glucosylation serves a defensive role in tea against herbivory. Our results also provide novel insights into the ecological relevance of flavonoid glycosides under biotic stress in plants.


Subject(s)
Camellia sinensis , Lepidoptera , Animals , Camellia sinensis/metabolism , Quercetin/pharmacology , Quercetin/metabolism , Herbivory , Larva , Tea/metabolism , Glucosides/metabolism , Plant Proteins/metabolism
3.
Plant Cell Environ ; 44(11): 3667-3680, 2021 11.
Article in English | MEDLINE | ID: mdl-34449086

ABSTRACT

Herbivore-induced plant volatiles prime neighbouring plants to respond more strongly to subsequent attacks. However, the key volatiles that trigger this state and their priming mechanisms remain largely unknown. The tea geometrid Ectropis obliqua is one of the most devastating leaf-feeding pests of tea plants. Here, plant-plant communication experiments demonstrated that volatiles emitted from tea plants infested by E. obliqua larvae triggered neighbouring plants to release volatiles that repel E. obliqua adult, especially mated females. Volatile analyses revealed that the quantity of eight volatiles increased dramatically when plants were exposed to volatiles emitted by infested tea plants, including (Z)-3-hexenol, linalool, α-farnesene, ß-Ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). The results of behavioural bioassays demonstrated that ß-Ocimene strongly repelled mated E. obliqua females. Individual volatile compound exposure experiments revealed that (Z)-3-hexenol, linalool, α-farnesene and DMNT triggered the emission of ß-Ocimene from tea plants. Chemical inhibition experiments demonstrated that the emission of ß-Ocimene induced by (Z)-3-hexenol, linalool, α-farnesene and DMNT were dependent on Ca2+ and JA signalling. These findings help us to understand how E. obliqua moths respond to volatiles emitted from tea plants and provide new insight into volatile-mediated plant-plant interactions. They have potential significance for the development of novel insect and pest control strategies in crops.


Subject(s)
Acyclic Monoterpenes/metabolism , Alkenes/metabolism , Camellia sinensis , Herbivory , Moths/physiology , Volatile Organic Compounds/metabolism , Animals , Camellia sinensis/growth & development , Larva/growth & development , Larva/physiology , Moths/growth & development , Sexual Behavior, Animal
SELECTION OF CITATIONS
SEARCH DETAIL