Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Agric Food Chem ; 67(34): 9560-9568, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31368704

ABSTRACT

ß-Carotene is a precursor of vitamin A and a dietary supplement for its antioxidant property. Producing ß-carotene by microbial fermentation has attracted much attention owing to consumers' preference for the natural product. In this study, an engineered photosynthetic Rhodobacter sphaeroides producing ß-carotene was constructed by the following strategies: (1) five promoters of different strengths were used to investigate the effect of the expression level of crtY on ß-carotene content. It was found that PrrnB increased the ß-carotene content by 109%. (2) blocking of the branched pentose phosphate pathway by zwf deletion, and (3) overexpressing dxs could restore the transcriptional levels of crtE and crtB. Finally, the engineered RS-C3 has the highest ß-carotene content of 14.93 mg/g dry cell weight (DCW) among all of the reported photosynthetic bacteria and the ß-carotene content reached 3.34 mg/g DCW under light conditions. Our results will be available for industrial use to supply a large quantity of natural ß-carotene.


Subject(s)
Bacterial Proteins/genetics , Intramolecular Lyases/genetics , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/metabolism , beta Carotene/biosynthesis , Bacterial Proteins/metabolism , Fermentation , Intramolecular Lyases/metabolism , Light , Metabolic Engineering , Promoter Regions, Genetic , Rhodobacter sphaeroides/radiation effects
2.
J Proteomics ; 187: 47-58, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29885470

ABSTRACT

Glycoproteins play pivotal roles in a series of biological processes and their glycosylation patterns need to be structurally and functionally characterized. However, the lack of versatile methods to release N-glycans as functionalized forms has been undermining glycomics studies. Here a novel method is developed for dissociation of N-linked glycans from glycoproteins for analysis by MS and online LC/MS. This new method employs aqueous ammonia solution containing NaBH3CN as the reaction medium to release glycans from glycoproteins as 1-amino-alditol forms. The released glycans are conveniently labeled with 9-fluorenylmethyloxycarbonyl (Fmoc) and analyzed by ESI-MS and online LC/MS. Using the method, the neutral and acidic N-glycans were successfully released without peeling degradation of the core α-1,3-fucosylated structure or detectable de-N-acetylation, revealing its general applicability to various types of N-glycans. The Fmoc-derivatized N-glycans derived from chicken ovalbumin, Fagopyrum esculentum Moench Pollen and FBS were successfully analyzed by online LC/MS to distinguish isomers. The 1-amino-alditols were also permethylated to form quaternary ammonium cations at the reducing end, which enhance the MS sensitivity and are compatible with sequential multi-stage mass spectrometry (MSn) fragmentation for glycan sequencing. The Fmoc-labeled N-glycans were further permethylated to produce methylated carbamates for determination of branches and linkages by sequential MSn fragmentation. SIGNIFICANCE OF THE STUDY: N-Glycosylation represents one of the most common post-translational modification forms and plays pivotal roles in the structural and functional regulation of proteins in various biological activities, relating closely to human health and diseases. As a type of informational molecule, the N-glycans of glycoproteins participate directly in the molecular interactions between glycan epitopes and their corresponding protein receptors. Detailed structural and functional characterization of different types of N-glycans is essential for understanding the functional mechanisms of many biological activities and the pathologies of many diseases. Here we describe a simple, versatile method to indistinguishably release all types of N-glycans as functionalized forms without remarkable side reactions, enabling convenient, rapid analysis and preparation of released N-glycans from various complex biological samples. It is very valuable for studies on the complicated structure-function relationship of N-glycans, as well as for the search of N-glycan biomarkers of some major diseases and N-glycan related targets of some drugs.


Subject(s)
Fluorenes/chemistry , Mass Spectrometry/methods , Polysaccharides/chemistry , Staining and Labeling/methods , Sugar Alcohols/chemistry , Animals , Catalysis , Chickens , Chromatography, Liquid/methods , Fagopyrum/chemistry , Fagopyrum/metabolism , Fluorenes/metabolism , Glycomics/methods , Glycoproteins/chemistry , Glycoproteins/metabolism , Ovalbumin/chemistry , Ovalbumin/metabolism , Oxidation-Reduction , Pollen/chemistry , Pollen/metabolism , Polysaccharides/metabolism , Spectrometry, Mass, Electrospray Ionization , Sugar Alcohols/metabolism , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL