Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Anal Bioanal Chem ; 416(14): 3415-3432, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649516

ABSTRACT

Epimedium-Rhizoma drynariae (EP-RD) was a well-known herb commonly used to treat bone diseases in traditional Chinese medicine. Nevertheless, there was incomplete pharmacokinetic behavior, metabolic conversion and chemical characterization of EP-RD in vivo. Therefore, this study aimed to establish metabolic profiles combined with multicomponent pharmacokinetics to reveal the in vivo behavior of EP-RD. Firstly, the diagnostic product ions (DPIs) and neutral losses (NLs) filtering strategy combined with UHPLC-Q-Orbitrap HRMS for the in vitro chemical composition of EP-RD and metabolic profiles of plasma, urine, and feces after oral administration of EP-RD to rats were proposed to comprehensively characterize the 47 chemical compounds and the 97 exogenous in vivo (35 prototypes and 62 metabolites), and possible biotransformation pathways of EP-RD were proposed, which included phase I reactions such as hydrolysis, hydrogenation, dehydrogenation, hydroxylation, dehydroxylation, isomerization, and demethylation and phase II reactions such as glucuronidation, acetylation, methylation, and sulfation. Moreover, a UHPLC-MS/MS quantitative approach was established for the pharmacokinetic analysis of seven active components: magnoflorine, epimedin A, epimedin B, epimedin C, icariin, baohuoside II, and icariin II. Results indicated that the established method was reliably used for the quantitative study of plasma active ingredients after oral administration of EP-RD in rats. Compared to oral EP alone, the increase in area under curves and maximum plasma drug concentration (P < 0.05). This study increased the understanding of the material basis and biotransformation profiles of EP-RD in vivo, which was of great significance in exploring the pharmacological effects of EP-RD.


Subject(s)
Drugs, Chinese Herbal , Epimedium , Feces , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Rats , Feces/chemistry , Epimedium/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/chemistry , Male , Administration, Oral
2.
J Pharm Biomed Anal ; 242: 116062, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38387127

ABSTRACT

Gushudan (GSD) was a traditional Chinese prescription with the remarkable effect of kidney-tonifying and bone-strengthening. However, the potential prevention mechanisms of the GSD on kidney-yang-deficiency-syndrome (KYDS) and its regulation on gut microbe metabolism still need to be further systematically investigated. This study established untargeted urinary metabolomics based on RP/HILIC-UHPLC-Q-Orbitrap HRMS and combined with multivariate statistical analysis to discover differential metabolites and key metabolic pathways. And the gut microbe metabolism pathway-targeted metabolomic based on HILIC-UHPLC-MS/MS was developed and validated to simultaneously determine 15 gut microbe-mediated metabolites in urine samples from the control group (CON), KYDS model group (MOD), GSD-treatment group (GSD) and positive group (POS). The results showed that a total of 36 differential metabolites were discovered in untargeted metabolomics. These differential metabolites included proline, cytosine, butyric acid and nicotinic acid, which were primarily involved in the gut microbe metabolism, amino acid metabolism, energy metabolism and nucleotide metabolism. And GSD played a role in preventing KYDS by regulating these metabolic pathways. The targeted metabolomics found that the levels of 10 gut microbe-mediated metabolites had significant differences in different groups. Among them, compared with the CON group, the levels of lysine, tryptophan, phenylacetylglycine and hippuric acid were increased in the MOD group, while the levels of threonine, leucine, dimethylamine, trimethylamine, succinic acid and butyric acid were decreased, which verified the disorders of gut microbe metabolism in the KYDS rats and GSD had a significant regulatory effect on this disorder. As well as by comparing analysis, it was found that the experimental results were consistent with previous metabolomics and microbiomics of fecal samples. Therefore, this integrated strategy of untargeted and targeted metabolomics not only elucidated the potential prevention mechanism of GSD on KYDS, but also provided a scientific basis for GSD preventing KYDS via the "gut-kidney" axis.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Rats , Animals , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Butyric Acid , Metabolomics/methods , Drugs, Chinese Herbal/pharmacology , Yang Deficiency/metabolism , Kidney/metabolism , Biomarkers/metabolism
3.
J Ethnopharmacol ; 325: 117830, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38301983

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Physalis angulata L., a traditional Chinese medicine called "Kuzhi" in China, was used traditionally to treat liver diseases (eg. icterus, hepatitis) as well as malaria, asthma, and rheumatism. AIM OF THE STUDY: Our study aimed to investigate the withanolides with anti-hepatic fibrosis effect from P. angulate. MATERIALS AND METHODS: Withanolides were obtained from the EtOH extract of P. angulate by bioassay-molecular networking analysis-guided isolation using column chromatography and normal/reversed-phase semipreparative HPLC. The structures of new withanolides were elucidated by combinations of spectroscopic techniques with NMR and ECD calculations. MTT cell viability assay, AO/EB staining method, cell wound healing assay, ELISA and Western blot experiments were employed to evaluate the anti-hepatic fibrosis activity and to uncover related mechanism. Molecular docking analysis and cellular thermal shift assay were used to evaluate and verify the interaction between the active withanolides and their potential targets. RESULTS: Eight unreported withanolides, withagulides A-H (1-8), along with twenty-eight known ones were obtained from P. angulate. Withanolides 6, 9, 10, 24, 27, and 29-32 showed marked anti-hepatic fibrosis effect with COL1A1 expression inhibition above 50 %. Physalin F (9), the main component in the active fraction, significantly decreased the TGF ß1-stimulated expressions of collagen I and α-SMA in LX-2 cells. Mechanism study revealed that physalin F exerted its anti-hepatic fibrosis effect via the PI3K/AKT/mTOR signaling pathway. CONCLUSION: This study suggested that withanolides were an important class of natural products with marked anti-hepatic fibrosis effect. The main withanolide physalin F might be a promising candidate for hepatic fibrosis treatment. The work provided experimental foundation for the use of P. angulate to treat hepatic fibrosis.


Subject(s)
Physalis , Withanolides , Withanolides/pharmacology , Withanolides/therapeutic use , Withanolides/chemistry , Physalis/chemistry , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry
4.
Article in English | MEDLINE | ID: mdl-38219632

ABSTRACT

An integrated bioactive-chemical quality markers (Q-markers) discovery strategy, which was based on the LC-MS plant metabolomics, HPLC fingerprint as well as the chemical spectrum-efficacy relationships, was designed to develop a methodology for accurate and comprehensive evaluation of the quality of Acanthopanax sessiliflorus leaves (ASL). Firstly, a high resolution and sensitivity UHPLC-Q-Orbitrap MS method was used for plant metabolomics analysis to obtain component characterization and screen potential chemical markers that differentiate between different harvesting periods. A total of 53 chemical components were identified, and 8 potential chemical markers were discovered, such as sucrose, maltol and phenylalanine. Secondly, a selective HPLC fingerprint analysis of ASL and its pancreatic lipase activity assay method was successfully investigated in vitro. In the study of chemical spectrum-efficacy relationships, neochlorogenic acid, chlorogenic acid, caffeic acid and hyperoside were screened and showed the inhibited pancreatic lipase activity with IC50 values, 0.16 ± 0.01, 0.13 ± 0.01, 0.31 ± 0.01, and 0.44 ± 0.02 mg/mL, respectively, which indicated the above four constituents were selected as the bioactive-chemical Q-markers of ASL. Finally, an accurate and reliable quantitative HPLC assay was developed and validated for simultaneous determination of four bioactive-chemical Q-markers in ASL, and their content levels in ASL varied widely in different harvesting periods. The systematic and efficient screening strategy for bioactive-chemical Q-markers in this study, based on " LC-MS plant metabolomics, HPLC fingerprint, and spectrum-efficacy relationships," could have effectively improved the quality assessment level of ASL.


Subject(s)
Drugs, Chinese Herbal , Eleutherococcus , Plant Extracts/chemistry , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Plant Leaves/chemistry , Lipase , Metabolomics/methods
5.
Fitoterapia ; 171: 105693, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37769999

ABSTRACT

An investigation on bioactive metabolites from the mangrove endophytic fungus Aspergillus sp. GXNU-4QQY1a led to the isolation of two undescribed cyclic peptides, guaspertide A (1) and guaspertide B (2), together with six known compounds, 3-8. These structures and the new compounds' absolute configuration were determined by mass spectrometry analysis, nuclear magnetic resonance spectrum, electronic circular dichroism, and single-crystal X-ray diffraction. Insecticidal assays were carried out with compounds 1-8, and the results showed that compounds 1-3 and 8 exhibited good insecticidal activity against citrus psyllids.


Subject(s)
Insecticides , Insecticides/pharmacology , Molecular Structure , Aspergillus/chemistry , Fungi , Crystallography, X-Ray
6.
Article in English | MEDLINE | ID: mdl-37247535

ABSTRACT

Gushudan (GSD), a compound prescription on the basis of traditional Chinese medicine (TCM) theory and clinical practice, has been used in the treatment of osteoporosis (OP) for many years. Although studies have shown that GSD can treat OP, there is a lack of systematic screening method to explore the bioactive components, which are still unclear. Therefore, this study was aimed to establish an integrated method to screen and determine bioactive ingredients of GSD in the treatment of OP by serum pharmacochemistry, network pharmacology and pharmacokinetics. Firstly, 112 components of the GSD extract and 90 serum migrating constituents were identified by the ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS), most of which were derived from flavonoids, tanshinones, coumarins and organic acids. Secondly, based on the network pharmacological analysis of the serum migrating constituents, 37 core targets and 20 main pathways related to both GSD and OP were obtained. More importantly, 7 bioactive ingredients were further screened as the PK markers by the network topology parameters including icariin, icariside II, isopimpinellin, bergapten, imperatorin, osthole and tanshinone IIA. Finally, a sensitive and accurate quantitative method based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was established and validated for simultaneous determination of the 7 bioactive ingredients in the rat plasma after oral administration of GSD extract, which was then applied to pharmacokinetic study. Besides, the overall pharmacokinetic characteristics were further calculated: Cmax was 180.52 ± 31.18 ng/mL, Tmax was 0.46 ± 0.20 h, t1/2 was 4.09 ± 0.39 h, AUC0-∞ was 567.24 ± 65.29 ng·h/mL, which displayed quick absorption and medium elimination in rats after oral administration of GSD extract. This study provided a new and holistic insight for exploring bioactive constituents and main targets to decode the therapeutic material basis of GSD against OP.


Subject(s)
Drugs, Chinese Herbal , Osteoporosis , Rats , Animals , Tandem Mass Spectrometry/methods , Network Pharmacology , Drugs, Chinese Herbal/analysis , Chromatography, High Pressure Liquid/methods , Osteoporosis/drug therapy
7.
Phytomedicine ; 116: 154868, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37209608

ABSTRACT

BACKGROUND: α-Viniferin, the major constituent of the roots of Caragana sinica (Buc'hoz) Rehder with a trimeric resveratrol oligostilbenoid skeleton, was demonstrated to possess a strong inhibitory effect on xanthine oxidase in vitro, suggesting it to be a potential anti-hyperuricemia agent. However, the in vivo anti-hyperuricemia effect and its underlying mechanism were still unknown. PURPOSE: The current study aimed to evaluate the anti-hyperuricemia effect of α-viniferin in a mouse model and to assess its safety profile with emphasis on its protective effect on hyperuricemia-induced renal injury. METHODS: The effects were assessed in a potassium oxonate (PO)- and hypoxanthine (HX)-induced hyperuricemia mice model by analyzing the levels of serum uric acid (SUA), urine uric acid (UUA), serum creatinine (SCRE), serum urea nitrogen (SBUN), and histological changes. Western blotting and transcriptomic analysis were used to identify the genes, proteins, and signaling pathways involved. RESULTS: α-Viniferin treatment significantly reduced SUA levels and markedly mitigated hyperuricemia-induced kidney injury in the hyperuricemia mice. Besides, α-viniferin did not show any obvious toxicity in mice. Research into the mechanism of action of α-viniferin revealed that it not only inhibited uric acid formation by acting as an XOD inhibitor, but also reduced uric acid absorption by acting as a GLUT9 and URAT1 dual inhibitor as well as promoted uric acid excretion by acting as a ABCG2 and OAT1 dual activator. Then, 54 differentially expressed (log2 FPKM ≥ 1.5, p ≤ 0.01) genes (DEGs) repressed by the treatment of α-viniferin in the hyperuricemia mice were identified in the kidney. Finally, gene annotation results revealed that downregulation of S100A9 in the IL-17 pathway, of CCR5 and PIK3R5 in the chemokine signaling pathway, and of TLR2, ITGA4, and PIK3R5 in the PI3K-AKT signaling pathway were involved in the protective effect of α-viniferin on the hyperuricemia-induced renal injury. CONCLUSIONS: α-Viniferin inhibited the production of uric acid through down-regulation of XOD in hyperuricemia mice. Besides, it also down-regulated the expressions of URAT1 and GLUT9 and up-regulated the expressions of ABCG2 and OAT1 to promote the excretion of uric acid. α-Viniferin could prevent hyperuricemia mice from renal damage by regulating the IL-17, chemokine, and PI3K-AKT signaling pathways. Collectively, α-viniferin was a promising antihyperuricemia agent with desirable safety profile. This is the first report of α-viniferin as an antihyperuricemia agent.


Subject(s)
Hyperuricemia , Uric Acid , Mice , Animals , Interleukin-17/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Hyperuricemia/drug therapy , Hyperuricemia/chemically induced , Kidney , Xanthine Oxidase/metabolism
8.
J Sep Sci ; 46(13): e2300124, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37070550

ABSTRACT

Kidney-yang-deficiency-syndrome is a neuroendocrine disease caused by the dysfunction of the adrenal-pituitary-target gland axis. Gushudan is a traditional Chinese medicine prescription with the functions of tonifying the kidney and strengthening bone, and its bone-strengthening effect has been confirmed by previous anti-osteoporosis research. However, its kidney-tonifying mechanism has not been clear so far. In this study, renal metabolomics and lipidomics based on gas chromatography-mass spectrometry and ultra-high-performance liquid chromatography-high resolution mass spectrometry were integrated to find the metabolic disorders in kidney-yang-deficiency-syndrome rats. Protein precipitation and liquid-liquid extraction were used to extract metabolome and lipidome from the kidney. Gushudan regulated abnormal levels of amino acids, lipids, purines, and carbohydrates, such as L-arginine, hypoxanine, stearic acid, and phosphatidylethanolamine (P-18:1/20:4), which had effects on many metabolic pathways, such as glycerophospholipid metabolism, sphingolipid metabolism, glycine, serine and threonine metabolism and purine metabolism, and so forth. By integrating metabolomics and lipidomics, this study comprehensively revealed the abnormal metabolic activities of amino acids, lipids, and nucleotides in kidney-yang-deficiency-syndrome, and the metabolic regulation mechanism of Gushudan in preventing kidney-yang-deficiency-syndrome, as well as the improvement of Gushudan in maintaining renal cell structure, mitochondrial function, and energy supply, which also provided some new evidence and connotation for "kidney-bone" axis.


Subject(s)
Drugs, Chinese Herbal , Lipidomics , Rats , Animals , Gas Chromatography-Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Kidney/metabolism , Yang Deficiency/metabolism , Mass Spectrometry/methods , Amino Acids , Lipids , Biomarkers/metabolism
9.
Huan Jing Ke Xue ; 44(2): 1085-1094, 2023 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-36775631

ABSTRACT

Crop residue retention and fertilizer application are the main sources of soil nutrient input in fields. Crop residue retention combined with appropriate fertilizer application rates could provide necessary nutrients for crop production under the premise of environmentally friendly conditions. The aim of this study was to clarify the influence of different topdressing nitrogen rates on the soil fungal community in a wheat field under crop residue retention and to evaluate the rationality of nitrogen fertilizer management in winter wheat from the perspective of soil ecological function. On the basis of full straw retention and 150 kg·hm-2 basal nitrogen, treatments with five topdressing nitrogen rates (0, 37.5, 75, 112.5, and 150 kg·hm-2) were set up. The abundance, diversity, structure, and ecological network of soil fungal communities were analyzed using real-time fluorescence quantitative PCR and high-throughput sequencing, and the main soil physical and chemical factors driving the change in soil fungal communities were explored. The results showed that, compared with the no topdressing nitrogen and low topdressing nitrogen rate treatments, high topdressing nitrogen rate treatments increased soil total nitrogen and mineral nitrogen and decreased soil pH, total phosphorus, available phosphorus, and available potassium. Compared with the no topdressing nitrogen treatments, the 37.5-150 kg·hm-2 topdressing nitrogen treatments significantly increased soil fungal community abundance (P<0.05), whereas there was no significant difference among different topdressing nitrogen treatments (P>0.05). The Heip index and Shannon index of soil fungal communities decreased gradually with the increase in topdressing nitrogen rate, and the Sobs index, Heip index, and Shannon index of soil fungal communities in the treatment with 150 kg·hm-2 topdressing nitrogen were significantly lower than those of 0-75 kg·hm-2 topdressing nitrogen treatments (P<0.05). Principal component analysis and similarity analysis showed that there were significant differences in soil fungal community structure under different topdressing nitrogen rate treatments (P<0.05). With the increase in topdressing nitrogen rate, the number of network edges and average number of neighbors of soil fungal ecological network increased first and then decreased, and the network complexity of 37.5 kg·hm-2 topdressing nitrogen treatments was the highest. Compared with 0-75 kg·hm-2 topdressing nitrogen treatments, 112.5 kg·hm-2 and 150 kg·hm-2 topdressing nitrogen treatments increased the characteristic path length of the soil fungal ecological network, whereas it decreased the network density. With the increase in topdressing nitrogen rate, the relative abundance of soil saprotrophs gradually increased, and the pathotroph-saprotroph-symbiotroph relative abundance gradually decreased. Redundancy analysis showed that soil pH, total phosphorus, mineral nitrogen, available phosphorus, and available potassium were the main soil physicochemical factors affecting the soil fungal community structure in the wheat field under different topdressing nitrogen rate treatments. In conclusion, on the basis of straw retention and basal nitrogen, topdressing nitrogen at the wheat jointing stage could change the diversity, structure, and species composition of the soil fungal community, in turn affecting the soil fungal ecological network and function, and high topdressing nitrogen rates could reduce soil fungal community diversity, ecological network complexity, and network density.


Subject(s)
Mycobiome , Soil , Soil/chemistry , Triticum , Nitrogen/analysis , Fertilizers/analysis , Phosphorus , Minerals , Agriculture/methods
10.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675133

ABSTRACT

Corydalis saxicola Bunting (CSB), whose common name in Chinese is Yanhuanglian, is a herb in the family Papaveraceae. When applied in traditional Chinese medicine, it is used to treat various diseases including hepatitis, abdominal pain, and bleeding haemorrhoids. In addition, Corydalis saxicola Bunting injection (CSBI) is widely used against acute and chronic hepatitis. This review aims to provide up-to-date information on the botanical distribution, description, traditional uses, phytochemistry, pharmacology, and clinical applications of CSB. A comprehensive review was implemented on studies about CSB from several scientific databases, such as SciFinder, Elsevier, Springer, ACS Publications, Baidu Scholar, CNKI, and Wanfang Data. Phytochemical studies showed that 81 chemical constituents have been isolated and identified from CSB, most of which are alkaloids. This situation indicates that these alkaloids would be the main bioactive substances and that they have antitumour, liver protective, antiviral, and antibacterial pharmacological activities. CSBI can not only treat hepatitis and liver cancer but can also be used in combination with other drugs. However, the relationships between the traditional uses and modern pharmacological actions, the action mechanisms, quality standards, and the material basis need to be implemented in the future. Moreover, the pharmacokinetics of CSBI in vivo and the toxicology should be further investigated.


Subject(s)
Alkaloids , Corydalis , Drugs, Chinese Herbal , Hepatitis , Humans , Corydalis/chemistry , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Hepatitis/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
11.
New Phytol ; 237(6): 2467-2477, 2023 03.
Article in English | MEDLINE | ID: mdl-36478218

ABSTRACT

Buckwheat is an important crop which originated in China and spread widely across Eurasia. However, exactly where in China domestication took place remains controversial. Archaeological and palynological records suggest a longer cultivation history of buckwheat in northern China than in southwestern China, but this conflicts with phylogenetic evidence implicating southwestern China as the centre of origin and diversity of buckwheat. We investigate alternative methodologies for inferring the occurrence of buckwheat cultivation and suggest that relative abundance could provide a reliable measure for distinguishing between wild and cultivated buckwheat in both present-day and fossil samples. Approximately 12 800-yr palaeoecological record shows that Fagopyrum pollen occurred only infrequently before the early Holocene. As southwestern China entered the early agricultural period, c. 8000-7000 yr ago, a slight increase in abundance of Fagopyrum pollen was observed. Approximately 4000 yr ago, concurrent with the Pu minority beginning to develop dry-land agriculture, the abundance of Fagopyrum pollen increased significantly, suggesting the cultivation of this crop. Fagopyrum pollen rose to a maximum value c. 1270 yr ago, suggesting an intensification of agricultural activity. These findings fill a gap in the Fagopyrum pollen record in southwestern China and provide new indications that early cultivation may have occurred in this region.


Subject(s)
Fagopyrum , Phylogeny , China , Agriculture , Pollen
12.
Fitoterapia ; 164: 105381, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36496049

ABSTRACT

Five pairs of new racemic alkamides (1a/1b and 4a/4b-7a/7b) and two new achiral derivatives (2-3), as well as five known ones (8-12), were purified from the 95% EtOH extract of Zanthoxylum nitidum. Their structures were elucidated based on spectroscopic analyses (NMR and HR-ESI-MS), electronic circular dichroism (ECD) and NMR calculations. The enantiomeric separation was successfully achieved by chiral-phase HPLC-ECD measurements. Among all the isolates, compounds 2, 3, and 10 showed inhibitory effects against five human cancer cell lines, with IC50 values in range of 18.51-48.03 µM.


Subject(s)
Zanthoxylum , Humans , Molecular Structure , Zanthoxylum/chemistry , Magnetic Resonance Spectroscopy , Circular Dichroism
13.
Molecules ; 27(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364087

ABSTRACT

The roots of Euphorbia fischeriana have been used as a traditional Chinese medicine for the treatment of tuberculosis and ringworm. In the current study, diterpenoids from the ethyl acetate extract of the roots E. fischeriana and their cytotoxic effects against five cancer lines were investigated. Two new ent-abietane diterpenoids, euphonoids H and I (1-2), as well as their two analogues (3-4) were first isolated from this source. The structures of the two new compounds were elucidated on the basis of spectroscopic data and quantum chemical calculation. Their absolute configurations were assigned via ECD spectrum calculation. The isolated compounds were evaluated for their antiproliferative activities against five cancer cell lines. Compounds 1 and 2 exhibited significant inhibitory effects against human prostate cancers C4-2B and C4-2B/ENZR cell lines with IC50 values ranging from 4.16 ± 0.42 to 5.74 ± 0.45 µM.


Subject(s)
Antineoplastic Agents, Phytogenic , Antineoplastic Agents , Diterpenes , Euphorbia , Neoplasms , Humans , Euphorbia/chemistry , Abietanes/pharmacology , Abietanes/analysis , Diterpenes/chemistry , Antineoplastic Agents/analysis , Plant Roots/chemistry , Molecular Structure , Antineoplastic Agents, Phytogenic/chemistry
14.
Chem Biodivers ; 19(7): e202200449, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35680557

ABSTRACT

Zanthoxylum nitidum (Roxb.) DC., is one of Guangxi's characteristic national medicines, and is the classic Laoban medicine of Yao people "Ru Shan Hu" and Zhuang medicine "Liang Bei Zhen". It has been used as an anti-inflammatory, analgesic and haemostatic medicine for thousands of years. In this study, four new sesquiterpenoids (1-4), along with six previously described coumarins (5-10), were isolated from 95 % EtOH extract of Zanthoxylum nitidum. Comprehensive spectroscopic analyses (NMR and HR-ESI-MS) were used to elucidate the structures of these isolates. The absolute configurations of nitidumine A-D (1-4) were established by electronic circular dichroism (ECD). Their cytotoxicity of all the isolates against five cancer cell lines (T24, HeLa, MGC-803, A549, and HepG2) was evaluated by MTT experiment and found not to be cytotoxicity.


Subject(s)
Drugs, Chinese Herbal , Sesquiterpenes , Zanthoxylum , China , Coumarins/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Molecular Structure , Sesquiterpenes/pharmacology , Zanthoxylum/chemistry
15.
Fitoterapia ; 159: 105195, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35427754

ABSTRACT

Two new polycyclic diterpenoids, euphkanoids H and I (1 and 2), along with 6 known analogues (2-8) were isolated from the roots of Euphorbia fischeriana, a traditional Chinese medicine. Their structures were identified by spectral methods, and the absolute configurations of 1 and 2 were determined by ECD calculation and single crystal X-ray diffraction, respectively. Compound 1 represents the first example of C-17 norcassane indole-diterpenes. All the isolates were screened for antiproliferative activity against a panel of human cancer cell lines using the MTT assay, and 1 showed significant cytotoxicity against HEL cells (IC50 = 3.2 µM). Simple mechanistic study revealed that 1 could induce cell cycle arrest at G0/G1 phase and apoptosis in HEL cells.


Subject(s)
Antineoplastic Agents, Phytogenic , Diterpenes , Euphorbia , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Cell Cycle Checkpoints , Diterpenes/chemistry , Diterpenes/pharmacology , Euphorbia/chemistry , Humans , Indoles , Molecular Structure , Plant Roots/chemistry , Skeleton
16.
Phytomedicine ; 98: 153979, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35176533

ABSTRACT

BACKGROUND: Capsule of alkaloids from leaf of Alstonia scholaris (CALAS) is a new investigational botanical drug (No. 2011L01436) for respiratory disease. Clinical population pharmacokinetics (PK), metabolomics and therapeutic data are essential to guide dosing in patients. Previous research has demonstrated the potential therapeutic effect of CALAS on acute bronchitis. Further clinical trial data are needed to verify its clinical efficacy, pharmacokinetics behavior, and influence of dosage and other factors. PURPOSE: To verify the clinical efficacy and explore the potential biomarkers related to CALAS treatment for acute bronchitis. MATERIALS AND METHODS: Oral CALAS was assessed in a randomized, double-blind, placebo-controlled trial. Fifty-five eligible patients were randomly assigned to four cohorts to receive 20, 40 or 80 mg, of CALAS three times daily for seven days, or placebo. Each CALAS cohort included 15 subjects, and the placebo group included 10 subjects. A population PK model of CALAS was developed using plasma with four major alkaloid components. Metabolomics analysis was performed to identify biomarkers correlated with the therapeutic effect of CALAS, and efficacy and safety were assessed based on clinical symptoms and adverse events. RESULTS: The symptoms of acute bronchitis were alleviated by CALAS treatment without serious adverse events or clinically significant changes in vital signs, electrocardiography or upper abdominal Doppler ultrasonography. Moreover, one compartment model with first-order absorption showed that an increase in aspartate transaminase will reduce the clearance (CL) of scholaricine, and picrinine CL was inversely proportional to body mass index, while 19-epischolaricine and vallesamine CL increased with aging. The serum samples from acute bronchitis patients at different time points were analyzed using UPLC-QTOF in combination with the orthogonal projection to latent structures-discriminant analysis, which indicated higher levels of lysophosphatidylcholines, lysophosphatidylethanolamines and amino acids with CALAS treatment than with placebo. CONCLUSION: This is the first study to evaluate the clinical efficacy and explored the potential biomarkers related to CALAS therapeutic mechanism of acute bronchitis by means of clinical trial combined the metabolomics study. This exploratory study provides a basis for further research on clinical efficacy and optimal dosing regimens based on pharmacokinetics behavior. Additional acute bronchitis patients and CALAS PK samples collected in future studies may be used to improve model performance and maximize its clinical value.

17.
Andrology ; 10(1): 143-153, 2022 01.
Article in English | MEDLINE | ID: mdl-34333872

ABSTRACT

BACKGROUND: Intracavernous pressure measurement following cavernous nerve electrostimulation has been extensively adopted for the evaluation of erectile function in animals. However, the effect of measurement time and acidosis during anesthesia is still lacking. OBJECTIVE: To explore the effect of measurement time and acidosis during anesthesia. MATERIALS AND METHODS: Fifty-six male Sprague-Dawley rats were used and anesthetized by a spontaneous inhalation of isoflurane. In the first step, rats were randomly divided into four groups: a control group and three time-delayed measurement groups (intracavernous pressure measurement beginning at 15, 30, and 45 min after cavernous nerve exposure). In the second step, rats were randomly divided into three groups: a control group and two time-delayed measurement groups. Two intravenous fluid support strategies were used in time-delayed measurement groups: a normal saline solution and an isotonic Na2 CO3 solution. RESULTS: Isoflurane-anesthetized rats developed systemic acidosis that worsens with time during intracavernous pressure measurement, which results in a significant decrease in the maximum intracavernous pressure value, intracavernous pressure/mean arterial pressure ratio, and total intracavernous pressure measured. The Na2 CO3 infusion could effectively correct acidosis. The decrease in intracavernous pressure was related to the reduced nitric oxide synthase activity, decreased cyclic guanosine monophosphate concentration, and reactive oxygen species activation in rat penis under acidosis conditions. DISCUSSION AND CONCLUSION: Prolonged isoflurane anesthesia-induced acidosis markedly depresses the erectile response to cavernous nerve electrostimulation in rats. In this situation, it is recommended to supplement with a Na2 CO3 infusion to maintain a normal acid-base balance.


Subject(s)
Acidosis/physiopathology , Anesthetics, Inhalation/pharmacology , Arterial Pressure/drug effects , Isoflurane/pharmacology , Penis/blood supply , Acidosis/chemically induced , Anesthetics, Inhalation/adverse effects , Animals , Disease Models, Animal , Electric Stimulation , Erectile Dysfunction , Isoflurane/adverse effects , Male , Penile Erection/drug effects , Penis/innervation , Rats , Rats, Sprague-Dawley
18.
Phytomedicine ; 93: 153765, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34610527

ABSTRACT

BACKGROUND: Hyperuricemia (HUA) is an important risk factor for gout, renal dysfunction and cardiovascular diseases. The whole plant of Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross, namely Persicaria capitata herba, is a well-known ethnic herb with potent therapeutic effects on urinary tract infections and urinary calculus, yet previous reports have only focused on its effect on urinary tract infections. PURPOSE: To evaluate the therapeutic potential of P. capitata herba against gout by investigating its antihyperuricemia and antigouty arthritis effects and possible mechanisms. METHODS: The ethanol extract (EP) and water extract (WP) of P. capitata herba were prepared by extracting dried and ground whole plants of P. capitata with 75% ethanol and water, respectively, followed by removal of solvents and characterization by UHPLC-Q-TOF/MS. The antihyperuricemia and antigouty arthritis effects of the two extracts were evaluated in a potassium oxonate- and hypoxanthine-induced hyperuricemia mouse model and a monosodium urate crystal (MSUC)-induced acute gouty arthritis mouse model, respectively. The mechanisms were investigated by testing their effects on the expression of correlated proteins (by Western blot) and mRNAs (by RT-PCR). RESULTS: UHPLC-HRMS fingerprinting and two chemical markers (i.e., quercetin and quercitrin) determination were used for the characterization of the WP and EP extracts. Both WP and EP extracts showed pronounced antihyperuricemia activities, with a remarkable decline in serum uric acid and a marked increase in urine uric acid in hyperuricemic mice. Unlike the clinical xanthine oxidase (XOD) inhibitor allopurinol, WP and EP did not show any distinct renal toxicities. The underlying antihyperuricemia mechanism involves the inhibition of the activity and expression of XOD and the downregulation of the mRNA and protein expression of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1). The extracts of P. capitata herba also demonstrated remarkable anti-inflammatory activity in MSUC-induced acute gouty arthritis mice. The mechanism might involve inhibitory effects on the expression of proinflammatory factors. CONCLUSIONS: The extracts of P. capitata herba possessed pronounced antihyperuricemia and antigouty arthritis effects and were, therefore, promising natural medicines for hyperuricemia-related disorders and gouty arthritis. The use of P. capitata herba for the treatment of urinary calculus may be, at least to some degree, related to its potential as an antihyperuricemia and antigouty arthritis drug.


Subject(s)
Arthritis, Gouty , Hyperuricemia , Animals , Arthritis, Gouty/drug therapy , Hyperuricemia/chemically induced , Hyperuricemia/drug therapy , Mice , Oxonic Acid , Plant Extracts/pharmacology , Uric Acid , Xanthine Oxidase
19.
Article in English | MEDLINE | ID: mdl-34504533

ABSTRACT

OBJECTIVE: To explore the clinical effect of root canal therapy combined with full crown restoration in patients with cracked teeth and chronic pulpitis. METHODS: From May 2018 to June 2020, 87 patients with cracked teeth and chronic pulpitis in our hospital were selected; the patients were randomly divided into the control group and the research group by random number method. The control group only used root canal therapy; the research group used root canal therapy combined with full crown restoration. The therapeutic effect, levels of inflammatory factors, chewing function, periodontal index, complications, and quality of life were compared between the two groups. RESULTS: The total effective rate of the research group (97.78%) was better than the total effective rate of the control group (85.71%) (P < 0.05). Compared with before treatment, the serum levels of interleukin-1ß (IL-1ß), IL-6, and C-reactive protein (CRP) of the two groups of patients decreased after treatment. After treatment, compared with the control group, the serum levels of IL-1ß, IL-6, and CRP in the research group decreased (P < 0.05). Compared with before treatment, the bite force of teeth and chewing efficiency of the two groups of patients increased after treatment. After treatment, compared with the control group, the bite force of teeth and chewing efficiency of the research group increased (P < 0.05). Compared with before treatment, the plaque index (PLI), probing depth (PD), gingival sulcus bleeding index (BI), and gingival index (GI) of the two groups of patients decreased after treatment. After treatment, compared with the control group, the PLI, PD, BI, and GI of the research group decreased (P < 0.05). The total incidence of complications in the research group was (11.11%), and the total incidence of complications in the control group was (16.67%); there was no significant difference between the two groups (P > 0.05). After treatment, compared with the control group, the quality of life scores of the patients in the research group were reduced (P < 0.05). CONCLUSION: Root canal therapy and full crown restoration have a definite curative effect in patients with cracked teeth and chronic pulpitis, which can improve the inflammatory response, restore chewing function, maintain periodontal health, improve the quality of life, and do not increase the incidence of complications, so it has good application value.

20.
Zhongguo Zhen Jiu ; 41(9): 1055-9, 2021 Sep 12.
Article in Chinese | MEDLINE | ID: mdl-34491658

ABSTRACT

OBJECTIVE: To analyze the literature of acupuncture and moxibustion for diseases in the recent 5 years, and discuss the spectrum and indications of acupuncture and moxibustion. METHODS: The literature on acupuncture and moxibustion for diseases in CNKI, Wanfang and VIP databases from January 1, 2015 to December 31, 2019 was searched, summarized and analyzed, and the disease spectrum was summarized. At the same time, the literature from 2015 to 2019 (group A), 1978 to 2005 (group B), and 1949 to 2005 (group C) was compared, and the indications of acupuncture and moxibustion therapy were summarized. RESULTS: There were 32 011 articles on acupuncture and moxibustion for diseases in the recent 5 years, including 377 kinds of indications. These indications can be mostly classified as neurology (9384), orthopedics and traumatology (7765), gastroenterology (3529) and obstetrics and gynecology (2283). The types of diseases were mostly gastroenterology (52 types), neurology (47 types), ophthalmology and otorhinolaryngology (47 types), and obstetrics and gynecology (42 types). The first-class indications of acupuncture and moxibustion therapy in the recent 5 years were hemiplegia, lumbar disc herniation, cervical spondylosis, knee osteoarthritis, insomnia, constipation and cerebrovascular diseases; the second-class were facial neuritis, shoulder pain and headache; the third-class were dysphagia, dysmenorrhea and depression; the forth-class were asthma, urinary retention, cerebral palsy, hypertension, dementia, side effects of radiotherapy and chemotherapy, infertility, allergic rhinitis, vertigo, shoulder-hand syndrome, diabetic neuropathy, herpes zoster, pain, hiccup, diarrhea, lumbar sprain and sciatica. CONCLUSION: Although the disease spectrum and indications of acupuncture and moxibustion therapy have changed to some extent in the recent 5 years, neurology and orthopedics and traumatology are still predominant, and the observation objects tend to transition from symptoms to diseases.


Subject(s)
Acupuncture Therapy , Acupuncture , Moxibustion , Bibliometrics , Dysmenorrhea , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL