Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Complementary Medicines
Database
Type of study
Affiliation country
Publication year range
1.
Physiol Behav ; 261: 114077, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36638877

ABSTRACT

Age-related neurodegenerative diseases accompanied by learning and memory deficits are growing in prevalence due to population aging. Cellular oxidative stress is a common pathomechanism in multiple age-related disorders, and various antioxidants have demonstrated therapeutic efficacy in patients or animal models. Many plants and plant extracts possess potent antioxidant activity, but the compounds responsible are frequently unknown. Identification and evaluation of these phytochemicals is necessary for optimal targeted therapy. A recent study identified theaflavin-3,3'-digallate (TFDG) as the most potent among a large series of phytochemical antioxidants. Here we examined if TFDG can mitigate learning and memory impairments in the D-galactose model of age-related neurodegeneration. Experimental mice were injected subcutaneously with D-galactose (120 mg/kg) for 56 days. In treatment groups, different doses of TFDG were administered daily by gavage starting on day 29 of D-galactose injection. Model mice exhibited poor learning and memory in the novel object recognition and Y-maze tests, reduced brain/body mass ratio, increased brain glutamate concentration and acetylcholinesterase activity, decreased brain acetylcholine concentration, and lower choline acetyltransferase, glutaminase, and glutamine synthetase activities. Activities of antioxidant enzymes glutathione peroxidase and superoxide dismutase were also reduced, while the concentration of malondialdehyde, a lipid peroxidation product, was elevated. Further, antioxidant genes Nrf2, Prx2, Gsh-px1, and Sod1 were downregulated in brain. Each one of these changes was dose-dependently reversed by TFDG. TFDG is an effective antioxidant response inducer and neuroprotectant that can restore normal neurotransmitter metabolism and ameliorate learning and memory dysfunction in the D-galactose model of age-related cognitive decline.


Subject(s)
Aging, Premature , Antioxidants , Mice , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Galactose/toxicity , Galactose/metabolism , Acetylcholinesterase/metabolism , Brain/metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Oxidative Stress , Aging , Maze Learning , Superoxide Dismutase/metabolism
2.
Wei Sheng Yan Jiu ; 49(5): 795-801, 2020 Sep.
Article in Chinese | MEDLINE | ID: mdl-33070827

ABSTRACT

OBJECTIVE: To study effect of nano-selenium and nano-cerium(nano cerium oxide) on the spermatogenic ability of mice irradiated by 1800 MHz microwave radiation(MR). METHODS: Forty-two ICR mice were randomly divided into groups: blank control group, solvent control group, microwave radiation model group, low, medium and high dose groups of nano-selenium+nano-cerium. In joint effects groups of nano-selenium and nano-cerium, the nano-selenium solution(60, 120 and 240 µg/kg) and the nano-cerium oxide solution(15, 30, 60 µg/kg) were administered to the stomach at 7:30 in the morning and 18:30 in the evening, respectively. The blank control group was orally administered with an equal volume of distilled water, and the solvent control group and the MR group were orally administered with an equal volume of carboxymethylcellulose sodium solution. During the second week of gastric administration, the mice were exposed to microwave radiation(1800 MHz) for 2 h every day(specific absorption ratio: 0. 2986 W/kg). After MR treatment, the daily sperm production of testis, sperm motility and sperm deformity rate in epididymis were measured, and the testicular marker enzymes [G6 PDH(6-phosphatedehydrogenase), ACP(acid phosphatase), LDH(lactate dehydrogenase)], antioxidant indexes [CAT(catalase), MDA(malondialdehyde) and T-AOC(total antioxidant capacity)] in testicular tissue were analyzed. RESULTS: Compared with the solvent control group, MR led to the decrease of sperm motility and the increase of sperm deformity rate, decreased the enzymes activities of G6 PDH, ACP and CAT, increased LDH activity and MDA content, and decreased the T-AOC level in testicular tissue, and the differences were statistically significant(P<0. 05). Compared with the MR group, the joint action of nano-selenium and nano-cerium with medium dose increased the daily sperm production of testis((18. 98±1. 27) ×10~6/g) vs. (15. 53±1. 24) ×10~6/g), decreased the sperm deformity rate(11. 74%±0. 91% vs. 16. 84%±2. 05%), and the joint action of nano-selenium and nano-cerium with medium and high dose increased the sperm motility in epididymis(61. 98%±6. 33%, 54. 17±4. 38 vs. 45. 16%±5. 01%), and the differences were statistically significant(P<0. 05). Compared with the MR group, the joint action of nano-selenium and nano-cerium with low and medium dose increased the activity of ACP(11. 07±0. 98, 14. 85±1. 39 vs. 8. 72±0. 91 nmol/(min·mg prot), P<0. 05). The joint action of nano-selenium and nano-cerium with medium and high dose increased the activity of G6 PDH(24. 12±2. 06, 21. 36±3. 65 vs. 15. 11±1. 73 nmol/(min·mg prot), P<0. 05) and decreased the activity of LDH(15. 52±1. 17, 13. 51±1. 68 vs. 22. 46±2. 01 nmol/(min·mg prot), P<0. 05). The joint action of nano-selenium and nano-cerium with medium dose increased the activity of CAT(17. 92±2. 03 vs. 11. 69±0. 87 nmol/(min·mg prot), P<0. 05) and decreased the content of MDA(5. 17 ±0. 62 vs. 9. 03 ±0. 63 nmol/mg prot, P<0. 05). The joint action of nano-selenium and nano-cerium with low, medium and high dose increased the level of T-AOC(22. 06±1. 54, 29. 36±2. 39, 21. 01±2. 47 vs. 12. 88±1. 82 U/mg prot, P<0. 05). CONCLUSION: The joint addition of nano-selenium and nano-cerium can improve the reproductive function of male mice exposed to MR, and can effectively alleviate the changes of mouse testicular marker enzyme activity and the decline of antioxidant capacity caused by MR.


Subject(s)
Selenium , Animals , Antioxidants , Humans , Male , Mice , Mice, Inbred ICR , Microwaves , Sperm Motility
3.
J Cell Biochem ; 120(11): 18600-18607, 2019 11.
Article in English | MEDLINE | ID: mdl-31338882

ABSTRACT

Lung cancer (especially, non-small cell lung cancer [NSCLC]) is one of the most malignant cancers in the world. Hinesol is the major component of the essential oil of Atractylodes lancea (Thunb.) DC and possesses the most promising anticancer function. However, the effects and molecular mechanism of hinesol on antiproliferation in NSCLC cells has not been well understood. In this study, we found that hinesol effectively inhibited the A549 and NCI-H1299 cells in a dose- and time-dependent manner by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. In addition, hinesol induced cell cycle arrest at G0/G1 phase and apoptosis assessed by flow cytometry in A549 cells. Furthermore, Western blot analysis showed that hinesol decreased phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase, IκBα, and p65 inhibited the expressions of Bcl-2, cyclin D1 and upregulated the expression of Bax. Based on these results, hinesol might be a potential drug candidate of anti-NSCLC for therapy.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Atractylodes/chemistry , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Sesquiterpenes/pharmacology , Spiro Compounds/pharmacology , A549 Cells , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Dose-Response Relationship, Drug , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Structure , Plant Extracts/pharmacology , Resting Phase, Cell Cycle/drug effects , Sesquiterpenes/chemistry , Spiro Compounds/chemistry , Time Factors
4.
Fish Shellfish Immunol ; 92: 367-376, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31200070

ABSTRACT

Oxidative stress plays a crucial role in ammonia nitrogen toxicity. In this study, the beneficial effects of dietary nano cerium oxide (nano CeO2) as a potent antioxidant were examined in the Chinese mitten crab (Eriocheir sinensis). Crabs were fed a diet supplemented with 0, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, or 12.8 mg/kg nano CeO2 for 60 d. The optimum supplementation level of nano CeO2 that significantly increased weight gain rate and decreased feed coefficient was 0.8 mg/kg. This level also offered immune protection when crabs were kept under ammonia nitrogen stress and/or exposed to pathogen infection (Aeromonas hydrophila). Supplementation with 0.8 mg/kg of CeO2 (i) relieved pathological damage to the hepatopancreas; (ii) increased hemocyte counts, including total number of hemocytes, granulocytes, and hyalinocytes; (iii) decreased malondialdehyde content and increased antioxidant enzyme activities of superoxide dismutase and catalase in the hemolymph; (iv) increased the activities of lysozyme, acid phosphatase, and alkaline phosphatase in the hemolymph; and (v) increased gene and protein expression of cathepsin L in the hepatopancreas. Mortality increased when crabs were injected with bacteria under ammonia nitrogen stress, but dietary supplementation with 0.8 mg/kg nano CeO2 decreased the mortality rate. Thus, the results of this study suggested that dietary supplementation with nano CeO2 in crabs promoted growth and up-regulated immunity to bacterial infection under ammonia nitrogen stress.


Subject(s)
Ammonia/adverse effects , Brachyura/drug effects , Cerium/metabolism , Immunity, Innate/drug effects , Metal Nanoparticles , Oxidative Stress/drug effects , Animal Feed/analysis , Animals , Brachyura/growth & development , Brachyura/immunology , Brachyura/physiology , Cerium/administration & dosage , Cerium/pharmacology , Diet , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Metal Nanoparticles/administration & dosage , Random Allocation
5.
Fish Shellfish Immunol ; 54: 481-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27153751

ABSTRACT

Hypoxia is a relevant physiological challenge for crab culture, and the hemolymph plays a crucial role in response to the hypoxia. In a 60 d feeding trial, Chinese mitten crabs (Eriocheir sinensis) fed a diet containing 0.2 mg/kg nano-selenium (nanoSe) showed a significantly increased weight gain rate (WGR) and a reduced feed coefficient (FC) compared to those fed diets with 0, 0.1, 0.4, 0.8, and 1.6 mg/kg nanoSe. Another 90 d feeding trial was conducted to determine the influence of dietary nanoSe on the immune response in juvenile Chinese mitten crabs kept under the condition of hypoxia. The results showed that hypoxia stress resulted in significantly increased hemocyte counts (THC, LGC, SGC, and HC), expression levels of the hemocyanin gene and protein, lactic acid level, and antioxidant capacity (T-AOC activities, SOD activities, GSH-Px and GSH content) in hemolymph supernatant. When these crabs were infected with Aeromonas hydrophila bacteria, hypoxia exposure increased mortality, but it was alleviated by a diet supplemented with 0.2 mg/kg nanoSe. The up-regulative effects of nanoSe (0.2 mg/kg) on antioxidant capacity, hemocyte counts, and hemocyanin expression under hypoxia exposure were further strengthened throughout, whereas lactic acid levels induced by hypoxia stress were restored. Thus, the observations in this study indicate that the level of dietary nanoSe is important in regulating immunity and disease resistance in crabs kept under hypoxia stress.


Subject(s)
Brachyura/drug effects , Hemocyanins/metabolism , Immunity, Innate/drug effects , Selenium/pharmacology , Stress, Physiological/drug effects , Animal Feed/analysis , Animals , Arthropod Proteins/metabolism , Diet , Gene Expression/drug effects , Hemolymph/drug effects
6.
Wei Sheng Yan Jiu ; 43(1): 16-21, 2014 Jan.
Article in Chinese | MEDLINE | ID: mdl-24564105

ABSTRACT

OBJECTIVE: To study the effects of nano-selenium (NSe) on cognition performance of mice exposed to 1800 MHz radiofrequency fields (RF). METHODS: Male mice were randomly divided into four groups, control and nano-Se low, middle and high dose groups (L, M, H). Each group was sub-divided into three groups, RF 0 min, RF 30 min and RF 120 min. Nano-se solution (2, 4 and 8 microg/ml) were administered to mice of L, M, H groups by intra-gastric injection respectively, 0.5 ml/d for 50 days, the conctral group were administered with distilled water. At the 21st day, the mice in RF subgroup were exposed to 208 microW/cm2 1800 MHz radiofrequency fields (0, 30 and 120 min/d respectively) for 30 days. The cognitive ability of the mice were tested with Y-maze. Further, the levels of MDA, GABA, Glu, Ach and the activities of CAT and GSH-Px in cerebra were measured. RESULTS: Significant impairments in learning and memory (P < 0.05) were observed in the RF 120 min group, and with reduction of the Ach level and the activities of CAT and GSH-Px and increase of the content of GABA, Glu and MDA in cerebrum. NSe enhanced cognitive performance of RF mice, decreased GABA, Glu and MDA levels, increased Ach levels, GSH-Px and CAT activities. CONCLUSION: NSe could improve cognitive impairments of mice exposed to RF, the mechanism of which might involve the increasing antioxidation, decreasing free radical content and the changes of cerebra neurotransmitters.


Subject(s)
Cognition Disorders/prevention & control , Cognition/radiation effects , Electromagnetic Fields/adverse effects , Environmental Exposure/analysis , Selenium/pharmacology , Animals , Antioxidants/metabolism , Cognition/physiology , Male , Maze Learning/drug effects , Maze Learning/radiation effects , Metal Nanoparticles , Mice , Neurotransmitter Agents/metabolism , Protective Agents/pharmacology , Radio Waves
7.
Asian Pac J Cancer Prev ; 14(11): 6363-7, 2013.
Article in English | MEDLINE | ID: mdl-24377533

ABSTRACT

Atractylis lancea (Thunb.) DC. (AL), an important medicinal herb in Asia, has been shown to have anti-tumor effects on cancer cells, but the involved mechanisms are poorly understood. This study focused on potential effects and molecular mechanisms of AL on the proliferation of the Hep-G2 liver cancer cell line in vitro. Cell viability was assessed by MTT test in Hep-G2 cells incubated with an ethanol extract of AL. Then, the effects of AL on apoptosis and cell cycle progression were determined by flow cytometry. Telomeric repeat amplification protocol (TRAP) assays was performed to investigate telomerase activity. The mRNA and protein expression of human telomerase reverse transcriptase (hTERT) and c-myc were determined by real-time RT-PCR and Western blotting. Our results show that AL effectively inhibits proliferation in Hep-G2 cells in a concentration- and time-dependent manner. When Hep-G2 cells were treated with AL after 48h,the IC50 was about 72.1 µg/ mL. Apoptosis was induced by AL via arresting the cells in the G1 phase. Furthermore, AL effectively reduced telomerase activity through inhibition of mRNA and protein expression of hTERT and c-myc. Hence, these data demonstrate that AL exerts anti-proliferative effects in Hep-G2 cells via down-regulation of the c-myc/hTERT/ telomerase pathway.


Subject(s)
Atractylis/chemistry , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-myc/genetics , Telomerase/genetics , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Down-Regulation/drug effects , G1 Phase/drug effects , G1 Phase/genetics , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/enzymology , Liver Neoplasms/genetics , Plant Extracts/chemistry , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Telomerase/metabolism
8.
Wei Sheng Yan Jiu ; 37(4): 502-4, 2008 Jul.
Article in Chinese | MEDLINE | ID: mdl-18839543

ABSTRACT

OBJECTIVE: To investigate the effects of Nano-Selenium on learning memory capability and activity of two kinds of Se-protein in brain and liver of mice, Na, SeO3 as the controls. METHODS: The mice were administred two kinds of origin (doses of 1 microgSe/d, 2 microgSe/d, 4 microgSe/d) Se by intra-gastric injection respectively. The learning memory ability of the mice was measured by Y-type maze test. Activities of glutathione peroxidase (GSH-Px) and iodothyronine deiodinase (ID) in brain and liver were also measured. RESULTS: In comparison with the control groups of Na2 Se03, learning memory abilities were improved and activities of ID and GSH-Px (P < 0.01 or P < 0.05) of brain and liver were increased in Nano-Se treatment groups. CONCLUSION: Nano-Se could improve learning memory ability of mice, and enhance ID and GSH-Px activities of brain and liver in mice.


Subject(s)
Glutathione Peroxidase/metabolism , Maze Learning/drug effects , Memory/drug effects , Metal Nanoparticles , Selenium/pharmacology , Animals , Brain/enzymology , Female , Glutathione Peroxidase/drug effects , Iodide Peroxidase/drug effects , Iodide Peroxidase/metabolism , Liver/enzymology , Male , Mice , Random Allocation , Selenium/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL