ABSTRACT
Bai Hua Qian Hu (Qianhu; Peucedanum praeruptorum Dunn) is a classical medicinal plant traditionally prescribed for respiratory ailments, including cough, pulmonary hypertension, and asthma. In this review, we summarize the research progress of the toxicology, pharmacokinetics, pharmacology, phytochemistry, botany, quality control, and traditional uses of P. praeruptorum in order to support future investigations into the scientific and therapeutic promise of this important medicinal plant. Information pertaining to P. praeruptorum was collected from scientific databases (ScienceDirect, Springer, SciFinder, PubMed, Baidu Scholar, Google Scholar, Web of Science), as well as toxicology papers from local conferences, M. Sc. and Ph.D. theses and dissertations, local magazines, classic texts on Chinese botanical drugs, and peer-reviewed journals. The Plant List (www.theplantlist.org) was utilized to verify the taxonomy of P. praeruptorum. P. praeruptorum was found to contain more than 119 distinct phytochemicals, including simple coumarins, pyranocoumarins, furanocoumarins, flavonoids, ketones, organic acids, and sterols, among others (e.g., praeruptorins A and B). Both crude plant extracts and purified metabolites of P. praeruptorum have been reported as treatments for hypertension, osteoporosis, Huntington's disease, and cancer. In addition, extracts of P. praeruptorum are reported to exhibit diverse pharmacological activities, including osteogenic, anti-osteoclastogenic, antidepressant, neuroprotective, antitumor, and anti-inflammatory effects. Research into the pharmacology and phytochemistry of P. praeruptorum partially support both traditional uses and extraction methods. However, further research is required to elucidate the relationships between these metabolites, their molecular mechanisms, their structure-function roles, and their antagonistic and synergistic effects.
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Osteoporosis (OP) is a metabolic disorder characterized by disrupted osteoclastic bone resorption and osteoblastic bone formation. Curculigo orchioides Gaertn has a long history of application in traditional Chinese and Indian medicine for treating OP. Orcinol gentiobioside (OGB) is a principal active constituent derived from Curculigo orchioides Gaertn and has been shown to have anti-OP activity. However, the therapeutic efficacy and mechanism of OGB in modulating osteoclastic bone resorption remain undefined. AIM OF THE STUDY: To evaluate the effect of OGB on the formation, differentiation and function of osteoclasts derived from bone marrow macrophages (BMMs), and further elucidate the underlying action mechanism of OGB in OP. MATERIALS AND METHODS: Osteoclasts derived from BMMs were utilized to evaluate the effect of OGB on osteoclast formation, differentiation and bone resorption. Tartrate-resistant acid phosphatase (TRAP) staining and activity assays were conducted to denote the activity of osteoclasts. Osteoclast-related genes and proteins were determined by RT-PCR and Western blotting assays. The formation of the F-actin ring was observed by confocal laser microscopy, and bone resorption pits were observed by inverted microscopy. The target of OGB in osteoclasts was predicted by using molecular docking and further verified by Cellular Thermal Shift Assay (CETSA) and reversal effects of the target activator. The apoptosis of osteoclasts was analyzed by flow cytometry, and autophagic flux in osteoclasts was determined by confocal laser microscopy. RESULTS: OGB inhibited osteoclast formation and differentiation, osteoclast-related genes and proteins expression, F-actin ring formation, and bone resorption activity. Molecular docking and CETSA analysis demonstrated that OGB exhibited good affinity for c-Jun N-terminal Kinase 1 (JNK1). In addition, OGB induced apoptosis and inhibited autophagy in osteoclasts, and the JNK agonist anisomycin reversed the increase in apoptosis and inhibition of autophagy induced by OGB in osteoclasts. CONCLUSION: OGB inhibited osteoclastogenesis by promoting apoptosis and diminishing autophagy via JNK1 signaling.
Subject(s)
Bone Resorption , Osteogenesis , Resorcinols , Humans , Actins/metabolism , Molecular Docking Simulation , Cells, Cultured , Osteoclasts , Bone Resorption/drug therapy , Bone Resorption/metabolism , Apoptosis , Autophagy , RANK Ligand/pharmacology , RANK Ligand/metabolism , Cell DifferentiationABSTRACT
This study aimed to investigate the therapeutic effects of Morinda officinalis iridoid glycosides(MOIG) on paw edema and bone loss of rheumatoid arthritis(RA) rats, and analyze its potential mechanism based on ultra-high performance liguid chromatography-guadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS) serum metabolomics. RA rats were established by injecting bovin type â ¡ collagen. The collagen-induced arthritis(CIA) rats were administered drug by gavage for 8 weeks, the arthritic score were used to evaluate the severity of paw edem, serum bone metabolism biochemical parameters were measured by ELISA kits, Masson staining was used to observe the bone microstructure of the femur in CIA rats. UPLC-Q-TOF-MS was used to analyze the alteration of serum metabolite of CIA rats, principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA) were used to screen the potential biomarkers, KEGG database analysis were used to construct related metabolic pathways. The results demonstrated that the arthritic score, serum levels of IL-6 and parameters related with bone metabolism including OCN, CTX-â , DPD and TRAP were significantly increased, and the ratio of OPG and RANKL was significantly decreased, the microstructure of bone tissue and cartilage were destructed in CIA rats, while MOIG treatments could significantly reduce arthritis score, mitigate the paw edema, reverse the changes of serum biochemical indicators related with bone metabolism, and improve the microstructure of bone tissue and cartilage of CIA rats. The non-targeted metabolomics results showed that 24 altered metabolites were identified in serum of CIA rats; compared with normal group, 13 significantly altered metabolites related to RA were identified in serum of CIA rats, mainly involving alanine, aspartate and glutamate metabolism; compared with CIA model group, MOIG treatment reversed the alteration of 15 differential metabolites, mainly involving into alanine, aspartate and glutamate metabolism, D-glutamine and D-glutamate metabolism, taurine and hypotaurine metabolism, valine, leucine and isoleucine biosynthesis. Therefore, MOIG significantly alleviated paw edema, improved the destruction of microstructure of bone and cartilage in CIA rats maybe through involving into the regulation of amino acid metabolism.
Subject(s)
Arthritis, Rheumatoid , Morinda , Rats , Animals , Iridoid Glycosides/chemistry , Morinda/chemistry , Chromatography, High Pressure Liquid , Aspartic Acid , Metabolomics , Arthritis, Rheumatoid/drug therapy , Edema , Alanine/therapeutic use , Glutamates/therapeutic use , BiomarkersABSTRACT
Ophiopogonis Radix is a well-known Traditional Chinese Medicine and functional food that is rich in polysaccharides and has fructan as a characteristic component. In this study, an inulin neoseries-type fructan designated as OJP-W2 was obtained and characterized from Ophiopogonis Radix, and its potential therapeutic effect on liver fibrosis in vivo were investigated. Structural studies revealed that OJP-W2 had a molecular weight of 5.76 kDa and was composed of glucose and fructose with a molar ratio of 1.00:30.87. Further analysis revealed OJP-W2 has a predominantly lineal (1-2)-linked ß-D-fructosyl units linked to the glucose moiety of the sucrose molecule with (2-6)-linked ß-D-fructosyl side chains. Pharmacological studies revealed that OJP-W2 exerted a marked hepatoprotective effect against liver fibrosis, the mechanism of action was involved in regulating collagen deposition (α-SMA, COL1A1 and liver Hyp contents) and TGF-ß/Smads signaling pathway, alleviating liver inflammation (IL-1ß, IL-6, CCL5 and F4/80) and MAPK signaling pathway, and inhibiting hepatic apoptosis (Bax, Bcl-2, ATF4 and Caspase 3). These data provide evidence for expanding Ophiopogonis Radix-acquired fructan types and advancing our understanding of the specific role of inulin neoseries-type fructan in liver fibrosis therapy.
Subject(s)
Fructans , Inulin , Humans , Fructans/pharmacology , Fructans/therapeutic use , Fructans/chemistry , Inulin/pharmacology , Inulin/therapeutic use , Liver Cirrhosis/drug therapy , Polysaccharides , GlucoseABSTRACT
Styrax, the balsam refined from the trunk of Liquidambar orientalis Mill. has a variety of applications in the perfumery and medical industry, especially for use in traditional Chinese medicine. However, the resources of styrax are in shortage due to being endangered of this plant. Grafting can improve the adaptability of plants to unfavorable environmental conditions. We tried to graft the L. orientalis Mill. on L. formosana Hance which was widely distributed in Jiangsu and Zhejiang provinces of China in an attempt to obtain styrax from grafted L. orientalis Mill. (grafted styrax, SG). Whether SG can become an alternative application of commercially available styrax (SC) need be further investigated. The components of SG were analyzed by GC-MS, and the results showed that the chromatograms of SG, SC, and styrax standard (SS) were consistent. The ration of 12 major chemical components based peak area in SG, SC, and SS were 93.95%, 94.24%, and 95.86% respectively. The assessment of toxicity, antithrombotic activity, and myocardial infarction protection of SG and SC was evaluated by using the zebrafish model, the results showed that SG and SC have the similar toxicological properties as evidenced by acute toxicity test, developmental toxicity and teratogenicity, and long-term toxicity test. Both SG and SC significantly decreased the thrombosis and increased blood flow velocity of zebrafish induced by adrenaline hydrochloride, inhibited myocardial apoptosis, myocardial infarction and myocardial inflammation in zebrafish induced by isoproterenol hydrochloride. Moreover, SG had an obvious improvement effect on cardiac output, while SC has no effect. Collectively, SG is similar to SC in chemical composition, toxicological properties, antithrombotic activity, and myocardial infarction protection effects, and may be used as a substitute for styrax to reduce the collection for wild L. orientalis Mill. and increase the available styrax resources.
Subject(s)
Liquidambar , Myocardial Infarction , Animals , Fibrinolytic Agents , Styrax , ZebrafishABSTRACT
Traditional Chinese medicine Scrophulariae Radix, which is also called Yuan Shen, black Shen, is the dried root of Scrophularia ningpoensis of the Scrophulariaceae family. Research has indicated that the chemical constituents of Scrophulariae Radix mainly include terpenoids, phenylpropanoids, organic acids, volatile oils, steroids, sugars, flavonoids, alkaloids and phenols, among which iridoids and phenylpropanoids were the main active constituents. It has been reported that extracts of Scrophulariae Radix or its active substances have anti-inflammatory, antioxidant, hepatoprotective, anti-tumor, anti-fatigue, uric acid-lowering, anti-depression, myocardial cell-protective and other pharmacological activities, and can regulate cardiovascular system, central nervous system and immune system. This paper reviewed the present research achievements of Scrophulariae Radix in chemical constituents, pharmacological activities, processing methods, toxicity and other aspects, and the clinical application of Scrophulariae Radix in ancient and modern times was illustrated. This paper aimed to provide reference for further research of Scrophulariae Radix and facilitated its clinical application.
Subject(s)
Drugs, Chinese Herbal , Scrophularia , Medicine, Chinese Traditional , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid , Plant Roots/chemistry , Scrophularia/chemistryABSTRACT
BACKGROUND: Glucocorticoids (GC)-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis, which leads to an increased risk of fracture in patients. The inhibition of the osteoblast effect is one of the main pathological characteristics of GIOP, but without effective drugs on treatment. PURPOSE: The aim of this study was to investigate the potential effects of orcinol glucoside (OG) on osteoblast cells and GIOP mice, as well as the mechanism of the underlying molecular target protein of OG both in vitro osteoblast cell and in vivo GIOP mice model. METHODS: GIOP mice were used to determine the effect of OG on bone density and bone formation. Then, a cellular thermal shift assay coupled with mass spectrometry (CETSA-MS) method was used to identify the target of OG. Surface plasmon resonance (SPR), enzyme activity assay, molecular docking, and molecular dynamics were used to detect the affinity, activity, and binding site between OG and its target, respectively. Finally, the anti-osteoporosis effect of OG through the target signal pathway was investigated in vitro osteoblast cell and in vivo GIOP mice model. RESULTS: OG treatment increased bone mineral density (BMD) in GIOP mice and effectively promoted osteoblast proliferation, osteogenic differentiation, and mineralization in vitro. The CETSA-MS result showed that the target of OG acting on the osteoblast is the p38 protein. SPR, molecular docking assay and enzyme activity assay showed that OG could direct bind to the p38 protein and is a p38 agonist. The cellular study found that OG could promote p38 phosphorylation and upregulate the proteins expression of its downstream osteogenic (Runx2, Osx, Collagen â , Dlx5). Meanwhile, it could also inhibit the nuclear transport of GR by increasing the phosphorylation site at GR226 in osteoblast cell. In vivo GIOP mice experiment further confirmed that OG could prevent bone loss in the GIOP mice model through promoting p38 activity as well as its downstream proteins expression and activity. CONCLUSIONS: This study has established that OG could promote osteoblast activity and revise the bone loss in GIOP mice by direct binding to the p38 protein and is a p38 agonist to improve its downstream signaling, which has great potential in GIOP treatment for targeting p38. This is the first report to identify OG anti-osteoporosis targets using a label-free strategy (CETSA-MS).
Subject(s)
Glucocorticoids , Osteoporosis , Animals , Mice , Glucocorticoids/adverse effects , Osteogenesis , Glucosides/therapeutic use , Molecular Docking Simulation , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/metabolismABSTRACT
Few studies have examined the association of factors associated with soil fertility and composition with the structure of microbial communities in the rhizosphere and endosphere. Hence, this study aimed to explore the effects of geographical differences on fungal communities in the roots of Scrophularia ningpoensis and the relationship between the fungal communities and secondary metabolic components in the host plant. We found that there was greater diversity in the fungal communities of the rhizosphere compartment than in endosphere communities. Ascomycota and Basidiomycota were dominant among the endosphere fungi, whereas Mortierellomycota was distributed in the rhizosphere. The composition of bulk soil obtained from different producing areas was significantly different, and the correlation between the rhizospheric and physicochemical compartments of the soil was higher than that observed with the endophytic compartment. Redundancy analysis and canonical correspondence analysis of the rhizospheric and endophytic samples revealed that the organic matter, total organic carbon, total nitrogen, and Hg levels were adequately correlated with the composition of rhizospheric and endophytic fungal communities. Multiple linear regression analyses facilitated the identification of potentially beneficial fungi whose abundance was correlated with levels of secondary metabolites, such as harpagide and harpagoside. These fungi could potentially provide valuable information regarding the use of S. ningpoensis in the medicinal plant industry.
Subject(s)
Mercury , Microbiota , Mycobiome , Scrophularia , SoilABSTRACT
Endophytic fungi play important roles in regulating plant growth and development and usually used as a promising strategy to enhance the biosynthesis of host valuable secondary metabolite, but the underlying growth-promoting mechanisms are only partly understood. In this study, the wild-type Arabidopsis thaliana seedlings co-cultured with fungal endophyte Epichloë bromicola showed auxin (IAA)-stimulated phenotypes, and the growth-promoting effects caused by E. bromicola were further verified by the experiments of spatially separated co-culture and fungal extract treatment. IAA was detected and identified in the extract of E. bromicola culture by LC-HRMS/MS, whereas 2,3-butanediol was confirmed to be the predominant volatile active compound in the diethyl ether and ethyl acetate extracts by GC-MS. Further study observed that IAA-related genes including synthesis key enzyme genes (CYP79B2, CYP79B3, NIT1, TAA1 and YUCCA1) and controlling polar transport genes (AUX1, BIG, EIR1, AXR3 and ARF1), were highly expressed at different periods after E. bromicola inoculation. More importantly, the introduction of fungal endophyte E. bromicola could effectively promote the growth and accumulation of coixol in Coix under soil conditions. Our study showed that endophytic fungus E. bromicola might be considered as a potential inoculant for improving medicinal plant growth.
Subject(s)
Coix , Epichloe , Coix/microbiology , Epichloe/geneticsABSTRACT
Both the biosynthesis and array of bioactive and medicinal compounds in plants can be influenced by interactions with endophytic and exogenous fungi. However, the composition of endophytic and exogenous fungal communities associated with many medicinal plants is unknown, and the mechanism by which these fungi stimulate the secondary metabolism of host plants is unclear. In this study, we conducted a correlative analysis between endophytic and exogenous fungi and dendrobine and biomass accumulation in Dendrobium nobile across five Chinese habitats: wild Danxia rock, greenhouse-associated large Danxia stone, broken Danxia stone, broken coarse sandstone, and wood spile. Across habitats, fungal communities exhibited significant differences. The abundances of Phyllosticta, Trichoderma, and Hydropus were higher in wild habitats than in greenhouse habitats. Wild habitats were host to a higher diversity and richness of exogenous fungi than were greenhouse habitats. However, there was no significant difference in endophytic fungal diversity between habitats. The differences between the fungal communities' effects on the dendrobine content and biomass of D. nobile were attributable to the composition of endophytic and exogenous fungi. Exogenous fungi had a greater impact than endophytic fungi on the accumulation of fresh weight (FW) and dendrobine in D. nobile. Furthermore, D. nobile samples with higher exogenous fungal richness and diversity exhibited higher dendrobine content and FW. Phyllosticta was the only genus to be significantly positively correlated with both FW and dendrobine content. A total of 86 strains of endophytic fungi were isolated from the roots, stems, and leaves of D. nobile, of which 8 strains were found to be symbiotic with D. nobile tissue-cultured seedlings. The strain DN14 (Phyllosticta fallopiae) was found to promote not only biomass accumulation (11.44%) but also dendrobine content (33.80%) in D. nobile tissue-cultured seedlings. The results of this study will aid in the development of strategies to increase the production of dendrobine in D. nobile. This work could also facilitate the screening of beneficial endophytic and exogenous fungal probiotics for use as biofertilizers in D. nobile.
ABSTRACT
The quantitative analysis of near-infrared spectroscopy in traditional Chinese medicine has still deficiencies in the selection of the measured indexes. Then Paeoniae Radix Alba is one of the famous "Eight Flavors of Zhejiang" herbs, however, it lacks the pharmacodynamic support, and cannot reflect the quality of Paeoniae Radix Alba accurately and reasonably. In this study, the spectrum-effect relationship of the anti-inflammatory activity of Paeoniae Radix Alba was established. Then based on the obtained bioactive component groups, the genetic algorithm, back propagation neural network, was combined with near-infrared spectroscopy to establish calibration models for the content of the bioactive components of Paeoniae Radix Alba. Finally, three bioactive components, paeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, and benzoyl paeoniflorin, were successfully obtained. Their near-infrared spectroscopy content models were also established separately, and the validation sets results showed the coefficient of determination (R2 > 0.85), indicating that good calibration statistics were obtained for the prediction of key pharmacodynamic components. As a result, an integrated analytical method of spectrum-effect relationship combined with near-infrared spectroscopy and deep learning algorithm was first proposed to assess and control the quality of traditional Chinese medicine, which is the future development trend for the rapid inspection of traditional Chinese medicine.
Subject(s)
Drugs, Chinese Herbal , Spectroscopy, Near-Infrared , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Quality Control , Neural Networks, ComputerABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Tiger bone, which had long been used in traditional Chinese medicine, had the action of removing wind and alleviating pain, strengthening the sinews and bones, and often used to treat bone impediment, and atrophic debility of bones in TCM clinical practice. As a substitute of natural bone tiger, artificial tiger bone Jintiange (JTG), has been approved by the State Food and Drug Administration of China for relief the symptom of osteoporosis, such as lumbago and back pain, lassitude in loin and legs, flaccidity and weakness legs, and walk with difficulty based on TCM theory. JTG has similar chemical profile to natural tiger bone, and contains mineral substance, peptides and proteins, and has been shown to protect bone loss in ovariectomized mice and exert the regulatory effects on osteoblast and osteoclast activities. But how the peptides and proteins in JTG modulate bone formation remains unclear. AIM: To investigate the stimulating effects of JTG proteins on osteogenesis and explore the possible underlying mechanisms. MATERIALS AND METHODS: JTG proteins were prepared from JTG Capsules by extracting calcium, phosphorus and other inorganic elements using SEP-PaktC18 desalting column. MC3T3-E1 cells were treated with JTG proteins to evaluate their effects and explore the underlying mechanisms. Osteoblast proliferation was detected by CCK-8 method. ALP activity was detected using a relevant assay kit, and bone mineralized nodules were stained with alizarin red-Tris-HCl solution. Cell apoptosis was analyzed by flow cytometry. Autophagy was observed by MDC staining, and autophagosomes were observed by TEM. Nuclear translocations of LC3 and CHOP were detected by immunofluorescence and observed under a laser confocal microscope. The expression of key proteins related to osteogenesis, apoptosis, autophagy and PI3K/AKT and ER stress pathways was analyzed by Western Blot analysis. RESULTS: JTG proteins improved osteogenesis as evidenced by the alteration of proliferation, differentiation and mineralization of MC3T3-E1 osteoblasts, inhibited their apoptosis, and enhanced autophagosome formation and autophagy. They also regulated the expression of key proteins of PI3K/AKT and ER stress pathways. In addition, PI3K/AKT and ER stress pathway inhibitors could reverse the regulatory effects of JTG proteins on osteogenesis, apoptosis, autophagy and PI3K/AKT and ER stress pathways. CONCLUSION: JTG proteins increased the osteogenesis and inhibited osteoblast apoptosis by enhancing autophagy via PI3K/AKT and ER stress signaling pathways.
Subject(s)
Apoptosis , Autophagy , Endoplasmic Reticulum Stress , Ethnopharmacology , Osteoblasts , Osteogenesis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Osteoblasts/cytology , Osteoblasts/drug effects , Osteogenesis/drug effects , Apoptosis/drug effects , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tigers , Bone and Bones/chemistry , Bone and Bones/drug effects , Bone and Bones/physiology , Cell Line , Metabolic Networks and Pathways/drug effects , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Animals , Mice , Ovariectomy , FemaleABSTRACT
Eucommia ulmoides Oliver is a dioecious plant, which plays an important role in traditional Chinese medicine. However, there has not yet been any research on male and female E. ulmoides. The UPLC fingerprints and OPLS-DA approach were able to quickly and easily identify and quantify E. ulmoides and differentiate between the male and female fingerprints. In this study, we optimized the UPLC conditions and analyzed them to investigate fingerprints of twenty-four extracts of Eucommiae Cortex (EC) and twenty-four extracts of Eucommiae Folium (EF) under optimal conditions. It was demonstrated that thirteen and twelve substances were possible chemical markers for EC and EF male and female discrimination and that the level of these markers - chlorogenic acid and protocatechuic acid - was many times higher in male than in female. This approach offered a reference for quality control and precise treatment of male and female E. ulmoides in the clinic.
Subject(s)
Drugs, Chinese Herbal , Eucommiaceae , Drugs, Chinese Herbal/chemistry , Eucommiaceae/chemistry , Medicine, Chinese Traditional , Plant Leaves/chemistry , Chromatography, High Pressure Liquid/methodsABSTRACT
Excessive and persistent inflammatory responses are a potential pathological condition that can lead to diseases of various systems, including nervous, respiratory, digestive, circulatory, and endocrine systems. Cannabinoid type 2 receptor(CB2R) belongs to the G protein-coupled receptor family and is widely distributed in immune cells, peripheral tissues, and the central nervous system. It plays a role in inflammatory responses under various pathological conditions. The down-regulation of CB2R activity is an important marker of inflammation and and CB2R modulators have been shown to have anti-inflammatory effects. This study explored the relationship between CB2R and inflammatory responses, delved into its regulatory mechanisms in inflammatory diseases, and summarized the research progress on CB2R modulators from plants other than cannabis, including plant extracts and monomeric compounds, in exerting anti-inflammatory effects. The aim is to provide new insights into the prevention and treatment of inflammatory diseases.
Subject(s)
Cannabinoid Receptor Modulators , Cannabinoids , Cannabinoid Receptor Modulators/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Receptors, Cannabinoid , Cannabinoids/pharmacology , Anti-Inflammatory Agents/pharmacologyABSTRACT
Monotropein (Mon) is a kind of iridoid glycoside plant secondary metabolite primarily present in some edible and medicinal plants. The aim of this study was to investigate the effect of Mon on lipopolysaccharide (LPS)-induced inflammatory bone loss in mice and osteoclasts (OCs) derived from bone marrow-derived macrophages (BMMs), and explore the mechanisms underlying the effect of Mon on LPS-induced osteoclastogenesis. It was found that Mon markedly attenuated deterioration of the bone micro-architecture, enhanced tissue mineral content (TMC) and bone volume/total volume (BV/TV), reduced structure model index (SMI) and trabecular separation/spacing (Tb.Sp) in the bone tissue and decreased the activities of tartrate resistant acid phosphatase-5b (TRACP-5b), receptor activator NF-κB (RANK), and receptor activator NF-κB ligand (RANKL) as well as the serum levels of interleukin 6 (IL-6) and interleukin 1ß (IL-1ß) in LPS-treated mice. In addition, Mon treatment reduced the number of TRAP positive OCs in the bone tissue of LPS-treated mice and also exerted a stronger inhibitory effect on formation, differentiation, and F-actin ring construction of OCs derived from BMMs. Mon significantly inhibited the expression of the nuclear factor of activated T-cells c1 (NFATc1) and the immediate early gene (C-Fos) and nuclear translocation of NFATc1 in LPS-treated OCs, thereby inhibiting the expression of matrix metalloproteinase-9 (MMP-9), cathepsin K (CtsK), and TRAP. Mon significantly inhibited the expression of TRAF6, phosphorylation of P65, and degradation of IKBα, thus inhibiting the activation of NF-κB pathway in LPS-induced inflammatory mice and OCs derived from BMMs, and also inhibited LPS-induced phosphorylation of protein kinase B (Akt) and Glycogen synthase kinase 3ß (GSK-3ß) in OCs derived from BMMs. In conclusion, these results suggested that Mon could effectively inhibit osteoclastogenesis both in vitro and in vivo and therefore may prove to be potential option for prevention and treatment of osteoclastic bone resorption-related diseases.
Subject(s)
Bone Resorption , Osteoclasts , Actins/metabolism , Animals , Bone Resorption/metabolism , Cathepsin K/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Iridoid Glycosides/pharmacology , Iridoids , Ligands , Lipopolysaccharides/adverse effects , Matrix Metalloproteinase 9/metabolism , Mice , NF-kappa B/metabolism , NFATC Transcription Factors , Proto-Oncogene Proteins c-akt/metabolism , TNF Receptor-Associated Factor 6/metabolism , Tartrate-Resistant Acid Phosphatase/metabolismABSTRACT
BACKGROUND: Tiger bone, which had been one of the most famous traditional Chinese medicine for 2000 years, was originate from the skeleton of Panthera tigris L., and had the actions of anti-inflammatory, analgesic, immune-regulatory and promoting healing of bone fracture, and was used for the treatment of osteoporosis and rheumatoid arthritis. Jin-Tian-Ge (JTG), the artificial tiger bone powder, were prepared from skeletons of several farmed animals to substitute the natural tiger bone, and has been used for the treatment of osteoporosis in clinical practice. However, the characteristic and mechanism of action of JTG for the therapy of osteoporosis need to be further evidenced by using modern pharmacological methods. The aim of this work is to investigate the bone-protective effects of JTG, and explore the possible underlying mechanism. METHODS: Ovariectomy (OVX) rats were orally administrated JTG or estradiol valerate (EV) for 12 weeks. We investigated the pharmacodynamic effects of JTG on anti-bone loss in OVX rats, and also investigated the role of JTG in promoting osteogenesis and inhibiting osteoclast differentiation. RESULTS: JTG increased the bone mineral density (BMD), improved the bone microarchitecture and biomechanical properties in ovariectomized rast, whereas reversed the bone high turnover in OVX rats as evidenced by serum biochemical markers in OVX rats. JTG increased osteogenic differentiation of BMSCs in vitro, and up-regulated the expression of the key proteins of BMP and Wnt/ß-catenin pathways. JTG also inhibited the osteoclastogenesis of BMM as evidenced by the alteration of the TRAP activity, F-actin construction and the expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, Cathepsin K (Ctsk) and matrix metallopeptidase 9 (MMP9) of OCs induced with RANKL and LPS, reduced the expression and phosphorylation of NF-κB in OCs. CONCLUSIONS: JTG prevented bone loss in OVX rats and increased osteogenic differentiation of BMSCs through regulation of the BMP and Wnt/ß-catenin pathway, inhibited osteoclastogenesis by suppressing the NF-κB pathway, suggesting that JTG had the potentials for prevention and treatment of osteoporosis by modulating formation and differentiation of osteoblast and osteoclast.
ABSTRACT
Actinidia eriantha Benth. (Called Maohuamihoutao in China) is a plant that has been utilized as a heat-clearing drug in She ethnic minority group for a long time in China. Specifically, it has been involved in the treatment of stomach cancer, colon cancer, cirrhosis with ascites, chronic hepatitis, leukemia, rectal prolapse, hernia and uterine prolapse. Pharmacological research provides partial evidence for the traditional use of A. eriantha and might have demonstrated the folk utilization of A. eriantha to combat many cancers. Crude extracts and relatively pure components of A. eriantha possess a variety of pharmacological activities, including anti-cancer, immunoregulatory, anti-angiogenic, neuroprotective, anti-inflammatory, and antioxidant activities. In addition, over 104 chemical substances have been determined from A. eriantha, involving terpenoids, alcohols, phenolics, aldehydes, organic acids, flavonoids glycosides, ketones, and glucoside. The existing literature reveals that a large proportion of the therapeutic effects of A. eriantha were rendered by the polysaccharides. However, the mechanisms of action and the structure-function correlations of these compounds, as well as the synergistic and antagonistic effects between them, need to be investigated further. Therefore, we propose that future studies on A. eriantha should focus on comprehensively assessing its medicinal quality, exploring its multi-target nature using network pharmacology approaches, and evaluating its long-term toxicity and efficacy in vivo.
ABSTRACT
Dendrobium officinale is a traditional Chinese medicine for treating gastrointestinal diseases by nourishing "Yin" and thickening the stomach lining. To study whether D. officinale endophytes can colonize the intestinal tract and regulate gut microbiota in mice, we used autoclave steam sterilizing and 60Co-γ radiation to eliminate D. officinale endophytes from its juice. Then, high-throughput ITS1-ITS2 rDNA and 16S rRNA gene amplicons were sequenced to analyze the microbial community of D. officinale endophytes and fecal samples of mice after administration of fresh D. officinale juice. Sterilization of D. officinale juice by autoclaving for 40 min (ASDO40) could more effectively eliminate the D. officinale endophytes and decrease their interference on the gut microbiota. D. officinale juice could increase beneficial gut microbiota and metabolites including short-chain fatty acids. D. officinale endophytes Pseudomonas mosselii, Trichocladium asperum, Titata maxilliformis, Clonostachys epichloe, and Rhodotorula babjevae could colonize the intestinal tract of mice and modulate gut microbiota after oral administration of the juice for 28 days. Thus, the regulatory effect of D. officinale juice on gut microbiota was observed, which provides a basis for inferring that D. officinale endophytes might colonize the intestinal tract and participate in regulating gut microbiota to treat diseases. Thus, this study further provides a new approach for the treatment of diseases by colonizing plant endophytes in the intestinal tract and regulating gut microbiota.
ABSTRACT
BACKGROUND: The unripe fruits of Rubus chingii Hu. ("Fu-peng-zi" in Chinese) is a well-known herbal tonic in traditional Chinese medicine (TCM) for tonifying liver and kidney. However, little is known regarding its therapeutic efficacy against liver fibrosis and the underlying mechanism. METHODS: The current research aims to explore the potential of Rubus chingii Hu. unripe fruits extract (RF) in the treatment of liver fibrosis and explore the underlying mechanism. RF was administered (450 and 900 mg·kg- 1 of body weight per day) orally to male C57BL/6 mice with CCl4-induced liver fibrosis for 3 weeks. The histopathological changes and fibrosis stage in liver tissue were assessed using hematoxylin and eosin (H&E) and Sirius red staining. The distribution of α-SMA and Col1A1 in the liver was analyzed to determine the hepatic stellate cells (HSCs) activation using immunohistochemistry and immunofluorescent analysis. Various biochemical markers in serum (ALT, AST) and liver (Hyp, IL1-ß, IL6, TNF-α and MCP-1) were observed to assess the liver's injury, fibrosis, and inflammation. In liver tissue, fibrosis-associated proteins including α-SMA, TGF-ß1, Smad2/3, p-Smad2/3, and Smad4 were detected through a Western blot assay. Pyrosequencing-based analysis of bacterial 16 S ribosomal RNA from variable regions V3-V4 of fecal samples characterized the gut microbiota. Spearman's rank correlation analysis was performed for the association between altered bacterial genera by RF and pharmacodynamics parameters. RESULTS: Three weeks of RF treatment can significantly lower liver inflammatory levels, pathological abnormalities, and collagen fibrous deposition in mice with CCl4-induced liver fibrosis. The expressions of α-SMA and Col1A1 were lowered by RF, while the expression levels of TGF-ß/Smads signaling pathway-related proteins, including TGF-ß1, p-Smad2/3, and Smad4, were dramatically decreased by RF. The RF treatment significantly increased or reduced 18 different bacterial species, restoring the CCl4-induced gut microbiota imbalance to the normal group's levels. According to correlation analysis, the bacterial genera Bifidobacterium and Turicibacter were the most significant in restoring CCl4-induced liver fibrosis. CONCLUSIONS: RF can reduce liver damage and delay the onset of liver fibrosis through modulating TGF-ß/Smads signaling pathway. Furthermore, RF's anti-liver fibrosis effect was related to balancing the gut microbial community, partly attained by increasing Bifidobacterium and Turicibacter in liver fibrosis.
ABSTRACT
Tetradium ruticarpum (TR) is widely used in Asia to treat gastrointestinal disorders and pain. Stir-frying with licorice aqueous extract is a traditional processing procedure of TR formed in a long-term practice and performed before clinical application, and believed to reduce TR's toxicity. However, its toxicity and possible toxicity attenuation approach are yet to be well investigated. Subacute toxicity and metabolomics studies were conducted to help understand the toxicity of TR. The subacute toxicity assessment indicated that 3 fold of the recommended therapeutic dose of TR did not show obvious subacute toxicity in rats. Although an extremely high dose (i.e., 60 fold of the recommended dose) may cause toxicity in rats, it reversed to normal after 2 weeks of recovery. Hepatocellular injury was the major toxic phenotype of TR-induced liver damage, indicating as aspartate aminotransferase (AST) and liver index increasing, with histopathologic findings as local hepatocyte necrosis, focal inflammatory cell infiltration, slightly bile duct hyperplasia, and partial hepatocyte vacuolation. Moreover, we evaluated the impact of processing in toxicity. TR processed with licorice could effectively reduce drug-induced toxicity, which is a valuable step in TR pretreatment before clinical application. Metabolomics profiling revealed that primary bile acid biosynthesis, steroid biosynthesis, and arachidonic acid metabolism were mainly involved in profiling the toxicity metabolic regulatory network. The processing procedure could back-regulate these three pathways, and may be in an Aryl hydrocarbon Receptor (AhR) dependent manner to alleviate the metabolic perturbations induced by TR. 7α-hydroxycholesterol, calcitriol, and taurocholic acid were screened and validated as the toxicity biomarkers of TR for potential clinical translation. Overall, the extensive subacute toxicity evaluation and metabolomic analysis would not only expand knowledge of the toxicity mechanisms of TR, but also provide scientific insight of traditional processing theory, and support clinical rational use of TR.