Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant Physiol Biochem ; 206: 108199, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100890

ABSTRACT

Cadmium (Cd) contamination is a serious challenge in agricultural soils worldwide, resulting in Cd entering the food chain mainly through plant-based food and threatening human health. Minimizing Cd bioaccumulation in wheat is an important way to prevent Cd hazards to humans. Hydroponic and pot experiments were conducted to comprehensively evaluate the effects of zinc sulfate (ZnSO4) and zinc oxide nanoparticles (nZnO) on Cd uptake, translocation, subcellular distribution, cellular ultrastructure, and gene expression in two wheat genotypes that differ in grain Zn accumulation. Results showed that high-dose nZnO significantly reduced root Cd concentration (52.44%∼56.85%) in two wheats, in contrast to ZnSO4. The S216 exhibited higher tolerance to Cd compared to Z797. Importantly, Zn supplementation enhanced Cd sequestration into vacuoles and binding to cell walls, which conferred stability to ultracellular structures and photosynthetic apparatus. Down-regulation of influx transporter (TaHMA2 and TaLCT1) and up-regulation of efflux transporters (TaTM20 and TaHMA3) in Z797 might contribute to Zn-dependent alleviation of Cd toxicity and enhance its Cd tolerance. Down-regulation of ZIP transporters (TaZIP3, -5, and -7) might contribute to an increase in root Zn concentration and inhibit Cd absorption. Additionally, soil Zn provided an effective strategy for the reduction of grain Cd concentrations in both wheats, with a reduction of 26%∼32% (high ZnSO4) and 11%∼67% (high nZnO), respectively. Collectively, these findings provide new insights and perspectives on the mechanisms of Cd mitigation in wheats with different Zn fertilizers and demonstrate that the effect of nZnO in mitigating Cd stress is greater than that of ZnSO4 fertilizers.


Subject(s)
Nanoparticles , Soil Pollutants , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Cadmium/metabolism , Zinc/pharmacology , Zinc/metabolism , Triticum/metabolism , Fertilizers , Soil , Membrane Transport Proteins/metabolism , Gene Expression , Soil Pollutants/metabolism
2.
Environ Sci Pollut Res Int ; 29(6): 8525-8537, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34491502

ABSTRACT

This study aimed to investigate the effects of selenium application on cadmium absorption, transport, and soil cadmium forms of winter wheat at different stages. A pot experiment with one Cd application (6 mg·kg-1) and five Se application levels (0, 1, 2, 5, and 10 mg·kg-1) was conducted. The results showed that Se application increased the grain yield of winter wheat, especially at 5 mg·kg-1 under Cd stress. As Se was supplied at 5 (Se5) and 10 (Se10) mg·kg-1, the Cd concentrations in roots and shoots, including stems, spikes, glumes, and grains, decreased at different growth stages, and the decreases in grain were 46.1% and 70.9% respectively. Se5 and Se10 also significantly decreased the translocation factors of Cd from roots to shoots, roots to stems, stems to spikes, and glumes to grains, promoted the accumulation of Cd in roots, and inhibited the accumulation of Cd in shoots and final grains at different growth stages, and the accumulation of Cd in grains decreased by 16.9% and 68.1%, respectively. High levels of Se application (Se5 and Se10) decreased the concentrations and proportions of exchangeable Cd (EXC-Cd) and iron (Fe)-manganese (Mn) oxide-bound Cd (R2O3-Cd) but increased the concentration and proportion of residual Cd (RES-Cd) in both soils with wheat and fallow soil at different growth stages. Therefore, under Cd stress, high levels of Se application reduced the shoot Cd concentration by inhibiting the uptake and transport of Cd from roots to shoots, and decreased the bioavailability of Cd in both soil with wheat and fallow by enhancing the transformation and distribution of RES-Cd from EXC-Cd and R2O3-Cd.


Subject(s)
Selenium , Soil Pollutants , Cadmium/analysis , Soil , Soil Pollutants/analysis , Triticum
3.
BMC Plant Biol ; 20(1): 550, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33287728

ABSTRACT

BACKGROUND: Cadmium (Cd) accumulation in crops affects the yield and quality of crops and harms human health. The application of selenium (Se) can reduce the absorption and transport of Cd in winter wheat. RESULTS: The results showed that increasing Se supply significantly decreased Cd concentration and accumulation in the shoot and root of winter wheat and the root-to-shoot translocation of Cd. Se application increased the root length, surface area and root volume but decreased the average root diameter. Increasing Se supply significantly decreased Cd concentration in the cell wall, soluble fraction and cell organelles in root and shoot. An increase in Se supply inhibited Cd distribution in the organelles of shoot and root but enhanced Cd distribution in the soluble fraction of shoot and the cell wall of root. The Se supply also decreased the proportion of active Cd (ethanol-extractable (FE) Cd and deionized water-extractable (FW) Cd) in root. In addition, the expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 significantly increased with increasing Cd concentration in root, and the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root was downregulated by increasing Se supply, regardless of Se supply or Cd stress. The expression of TaHMA3-b in root was significantly downregulated by 10 µM Se at both the 5 µM and 25 µM Cd level but upregulated by 5 µM Se at the 25 µM Cd level. The expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 in shoot was downregulated by increasing Se supply at 5 µM Cd level, and 5 µM Se upregulated the expression of those genes in shoot at 25 µM Cd level. CONCLUSIONS: The results confirm that Se application limits Cd accumulation in wheat by regulating the subcellular distribution and chemical forms of Cd in winter wheat tissues, as well as the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root.


Subject(s)
Cadmium/metabolism , Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Selenium/metabolism , Triticum/metabolism , Biological Transport , Cadmium/chemistry , Gene Expression Regulation, Plant , Membrane Transport Proteins/genetics , Plant Proteins/genetics , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/chemistry , Plant Shoots/genetics , Plant Shoots/metabolism , Seedlings/chemistry , Seedlings/genetics , Seedlings/metabolism , Subcellular Fractions/chemistry , Triticum/chemistry , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL