Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Food Funct ; 10(10): 6543-6555, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31545328

ABSTRACT

Mastitis, a major disease affecting dairy cows, is most commonly caused by Staphylococcus aureus (S. aureus). Selenium (Se) can activate pivotal proteins in immune responses and regulate the immune system, and microRNA-155 (miR-155) is a key transcriptional regulator for inflammation-related diseases. We constructed the model of mouse mastitis in vivo and primary mouse mammary epithelial cells (MMECs) in vitro, which were induced by S. aureus. Se content of the mammary was estimated using an atomic fluorescence spectrophotometer. Histopathological analysis was performed via hematoxylin and eosin (H&E) staining. The mmu-miR-155-5p mimic was transfected in MMECs, and viability was determined through the MTT assay. Transfected efficiency was evaluated by qPCR and fluorescence staining. Cytokines including TNF-α, IL-1ß, IL-10 and TLRs were detected with qPCR. In addition, western blotting was used to evaluate the expression of the NF-κB and MAPKs signaling pathways. The results demonstrated that a Se-supplemented diet improved the content of Se in mammary tissues. Histopathological studies indicated that the mammary glands were protected in the Se-supplemented group after S. aureus infection. Se-supplementation suppressed the production of MPO, mmu-miR-155, TNF-α, IL-1ß, and TLR2 and significantly inhibited the phosphorylation of NF-κB and MAPKs in vivo and in vitro. All the data indicated that mmu-miR-155 played a pro-inflammatory role in our study, and Se-supplementation could suppress the expression of mmu-miR-155 to inhibit inflammation in S. aureus-induced mastitis in mice.


Subject(s)
Cattle Diseases/drug therapy , Mastitis/drug therapy , MicroRNAs/genetics , Selenium/administration & dosage , Staphylococcal Infections/veterinary , Animals , Cattle , Cattle Diseases/genetics , Cattle Diseases/immunology , Cattle Diseases/microbiology , Cytokines/genetics , Cytokines/immunology , Female , Gene Expression Regulation , Mastitis/genetics , Mastitis/immunology , Mastitis/microbiology , Mice , MicroRNAs/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Staphylococcal Infections/genetics , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology
2.
Biol Trace Elem Res ; 173(1): 116-25, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26779623

ABSTRACT

Selenium (Se), a nutritionally essential trace element, is associated with health and disease. Selenoprotein T (SelT) was identified as a redoxin protein with a selenocystein, localizing in the endoplasmic reticulum. The myosin light chain kinase (MLCK) and myosin light chain (MLC) play key roles in the contraction process of smooth muscle. The present study was to detect the effect and mechanism of SelT on the contraction process of gastric smooth muscle. The WT rats were fed with different Se concentration diets, and Se and Ca(2+) concentrations were detected in the gastric smooth muscle. Western blot and qPCR were performed to determine SelT, CaM, MLCK, and MLC expressions. MLCK activity was measured by identifying the rates of [γ-32P]ATP incorporated into the MLC. The results showed Se and Ca(2+) concentrations were enhanced with Se intake in gastric smooth muscle tissues. With increasing Se, SelT, CaM, MLCK and MLC expressions increased, and MLCK and MLC activation improved in gastric smooth muscle tissue. The SelT RNA interference experiments showed that Ca(2+) release, MLCK activation, and MLC phosphorylation were regulated by SelT. Se affected the gastric smooth muscle constriction by regulating Ca(2+) release, MLCK activation, and MLC phosphorylation through SelT. Se plays a major role in regulating the contraction processes of gastric smooth muscle with the SelT.


Subject(s)
Calcium Signaling/drug effects , Gastric Mucosa/metabolism , Gene Expression Regulation/drug effects , Muscle Contraction/drug effects , Muscle, Smooth/metabolism , Myosin-Light-Chain Kinase/metabolism , Selenium/pharmacology , Selenoproteins/biosynthesis , Animals , Enzyme Activation/drug effects , Male , Mice , Mice, Inbred BALB C , Myosin Light Chains/biosynthesis , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL