Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
J Asian Nat Prod Res ; 26(1): 69-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38305031

ABSTRACT

Two new depside derivatives 1 and 2 as well as a new pair of rosmarinic acid enantiomers 3a/b were isolated from the leaves of Perilla frutescens (L.) britt. The chemical structures of these compounds were identified based on detailed spectroscopic and physicochemical analyses (HR-ESI-MS, NMR) and comparison of literature data. Compounds 3a/b were obtained by chiral separation, and their absolute configurations were determined by comparison of experimental and calculated ECD spectra. Compounds 3a/b exhibited potential inhibitory activity on nitric oxide (NO) production induced by lipopolysaccharide in RAW264.7 cells with IC50 values of 15.92 ± 3.32 µM and 48.72 ± 4.12 µM.


Subject(s)
Perilla frutescens , Perilla frutescens/chemistry , Rosmarinic Acid , Plant Extracts/chemistry , Plant Leaves/chemistry , Anti-Inflammatory Agents/pharmacology
2.
Environ Pollut ; 346: 123659, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38417603

ABSTRACT

Organophosphorus flame retardants (OPFRs), such as 2-ethylhexyl diphenyl phosphate (EHDPHP), are ubiquitously used, leading to pervasive environmental contamination and human health risks. While associations between EHDPHP and health issues such as disruption of hormones, neurotoxic effects, and toxicity to reproduction have been recognized, exposure to EHDPHP during perinatal life and its implications for the intestinal health of dams and their pups have largely been unexplored. This study investigated the intestinal toxicity of EHDPHP and the potential for which inulin was effective. Dams were administered either an EHDPHP solution or a corn oil control from gestation day 7 (GD7) to postnatal day 21 (PND21), with inulin provided in their drinking water. Our results indicate that inulin supplementation mitigates damage to the intestinal epithelium caused by EHDPHP, restores mucus-secreting cells, suppresses intestinal hyperpermeability, and abates intestinal inflammation by curtailing lipopolysaccharide leakage through reshaping of the gut microbiota. A reduction in LPS levels concurrently inhibited the inflammation-associated TLR4/NF-κB pathway. In conclusion, inulin administration may ameliorate intestinal toxicity caused by EHDPHP in dams and pups by reshaping the gut microbiota and suppressing the LPS/TLR4/NF-κB pathway. These findings underscore the efficacy of inulin as a therapeutic agent for managing health risks linked to EHDPHP exposure.


Subject(s)
Biphenyl Compounds , Gastrointestinal Microbiome , Phosphates , Pregnancy , Female , Humans , Phosphates/pharmacology , NF-kappa B , Lipopolysaccharides , Inulin/pharmacology , Toll-Like Receptor 4/metabolism , Inflammation
3.
Curr Med Chem ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347784

ABSTRACT

Antioxidant research has recently become a popular topic. Medicinal plants are important sources of novel active compounds. Diarylheptanoids, a typical family of secondary plant metabolites, are of great interest owing to their extensive spectrum of biological activities. They possess a unique 1,7-diphenylmethane structural skeleton. Thus, this review summarizes the natural linear or macrocyclic diarylheptanoids with antioxidant activity in the last two decades. In addition, the relationships between the structural characteristics of natural diarylheptanoids and their antioxidant capacity were also discussed. All the available data highlight the potential of natural diarylheptanoids as novel antioxidants.

4.
Bioorg Chem ; 143: 107052, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171154

ABSTRACT

Eucommiae Cortex is one of important traditional Chinese medicines (TCMs) used in Asia for preventing and treating osteoporosis induced by estrogen deficiency. However, the low exposure of prototype components in Eucommiae Cortex in vivo is difficult to interpret its efficacy. Under the guidance of UPLC-Q/TOF-MS, 42 metabolites including 32 lignans and 10 phenolics, 21 of which were new compounds, were isolated from rat urine and feces after oral administration of aqueous extract of E. ulmoides Oliv. by various chromatographic techniques. Their structures were determined based on extensive physicochemical analyses and spectral data. Their absolute configurations were determined by experimental and calculated ECD spectra, along with the calculated NMR with DP4 evaluation. Additionally, all isolated metabolites were evaluated for their estrogen-like activities, and there are 15 metabolites having estrogen-like effects after assessing influences in MCF-7 cells. Further, Dual Luciferase Reporter Gene Assay was used to determine their activation with estrogen receptor, M10 and M11 mixtures, M14, M19, M33, M27, M31, M38-M41 could activate ERα, and M19 and M41 could activate ERß. These results not only clarify the pharmacological substances of Eucommiae Cortex, but also provide a basis for guiding its clinical application.


Subject(s)
Drugs, Chinese Herbal , Lignans , Rats , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/analysis , Chromatography, High Pressure Liquid/methods , Medicine, Chinese Traditional , Estrogens/pharmacology , Lignans/pharmacology
5.
Chem Biodivers ; 21(3): e202301782, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263671

ABSTRACT

Myrrh is widely used in clinical practice but accompanied by obvious toxicity. According to traditional Chinese medicines theory, processing with vinegar can effectively reduce its toxicity. However, the detoxification processing technology of Myrrh and the corresponding mechanism have been unclear. The objective of this study is to systematically analyze the variation in chemical composition of raw Myrrh and its processed products using UPLC-Q-TOF-MS/MS coupled with chemometrics. A total of 75 compounds including 56 sesquiterpenoids, 2 diterpenoids, 15 triterpenoids and 2 other types were identified. Raw Myrrh and its processed products were divided into two major groups, and 14 chemical markers were selected out by principal component analysis and partial least square discriminant analysis. Additionally, the exact content of 5 representative chemical markers was determined to be significantly reduced after vinegar-processing by UPLC-QQQ-MS/MS. Moreover, multivariate statistical analysis and the quantitative results comprehensively indicated that the optimized processing method was processing at a ratio of 200 : 5 (Myrrh:vinegar). This research provides not only a reliable foundation for the study of Myrrh, but also a scientific reference for clinical use of this herb.


Subject(s)
Commiphora , Drugs, Chinese Herbal , Resins, Plant , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry , Acetic Acid , Drugs, Chinese Herbal/chemistry , Chemometrics , Chromatography, High Pressure Liquid/methods
6.
Phytother Res ; 38(2): 1104-1158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176694

ABSTRACT

Natural products have played a significant role throughout history in the prevention and treatment of numerous diseases, particularly cancers. As a natural product primarily derived from various medicinal plants in the Withania genus, withanolides have been shown in several studies to exhibit potential activities in cancer treatment. Consequently, understanding the molecular mechanism of withanolides could herald the discovery of new anticancer agents. Withanolides have been studied widely, especially in the last 20 years, and attracted the attention of numerous researchers. Currently, over 1200 withanolides have been classified, with approximately a quarter of them having been reported in the literature to be able to modulate the survival and death of cancer cells through multiple avenues. To what extent, though, has the anticancer effects of these compounds been studied? How far are they from being developed into clinical drugs? What are their potential, characteristic features, and challenges? In this review, we elaborate on the current knowledge of natural compounds belonging to this class and provide an overview of their natural sources, anticancer activity, mechanism of action, molecular targets, and implications for anticancer drug research. In addition, direct targets and clinical research to guide the design and implementation of future preclinical and clinical studies to accelerate the application of withanolides have been highlighted.


Subject(s)
Antineoplastic Agents , Neoplasms , Plants, Medicinal , Withania , Withanolides , Humans , Withanolides/pharmacology , Withanolides/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy
7.
Chem Biodivers ; 21(1): e202301585, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061998

ABSTRACT

Streptocaulon juventas (Lour.) Merr. (SJ) is a herbal medicine can promote wound healing. Cardiac glycosides, especially periplogenin, digitoxigenin, and their glycosides were the main constituents of SJ. We aim to establish a method for the simultaneous determination of periplogenin and digitoxigenin in SJ and evaluate the wound healing activities of these two components. UPLC-QqQ-MS/MS was used for the determination of periplogenin and digitoxigenin. Meanwhile, rats were subjected to full-thickness skin resection on the back to investigate the wound healing effects of periplogenin and digitoxigenin. The content of periplogenin and digitoxigenin in 13 batches of SJ extracts ranged from 43.26 to 97.15 µg/g and 18.04 to 55.55 µg/g, respectively. Periplogenin and digitoxigenin significantly increased the rate of wound healing in rats, increased the content of hydroxyproline in wound tissue, and improved the pathological state of wound skin tissue.


Subject(s)
Apocynaceae , Digitoxigenin , Rats , Animals , Tandem Mass Spectrometry/methods , Wound Healing
8.
J Ethnopharmacol ; 322: 117579, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38104882

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic ulcers (DUs) are commonly seen in the lower limbs, especially the feet. Long-term hyperglycaemia in diabetic patients may cause peripheral microvascular damage, which affects local blood flow reconstruction when the skin is ruptured. This results in delayed or even non-healing of skin wounds. Chebulae Fructus Immaturus (CFI) is a traditional Chinese medicine. According to traditional Chinese medicine theory, CFI belongs to the lung channel and large intestine channel. Clinical data confirm a significant clinical effect of CFI in the treatment of skin diseases. CFI can be safely used to treat wounds due to its natural active ingredients. AIM OF THE STUDY: This study utilised HPLC-ESI-QTOF-MS/MS combined with network pharmacology to investigate the mechanism of Chebulae Fructus Immaturus extract (CFIE) in the treatment of DU. Moreover, the efficacy of CFIE on DU was verified in vitro and in vivo by constructing cell models and mouse models. MATERIALS AND METHODS: The main ingredients of CFIE were identified by HPLC-ESI-QTOF-MS/MS. The targets of these ingredients were predicted by database analysis and intersected with the DU targets. Gene ontology (GO) was used for functional enrichment of differential genes, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for enrichment of signalling pathways related to the differential genes. The network pharmacology findings were validated in vivo and in vitro, and the affinity of key targets and active components was assessed using molecular docking. RESULTS: Twenty-nine compounds of CFIE were identified by HPLC-ESI-QTOF-MS/MS, and their potential targets were predicted. Among these, 41 targets were associated with DU. KEGG enrichment analysis showed that the PI3K/AKT and HIF-1α signalling pathways were significantly enriched, which may be related to the promotion of wound angiogenesis. In vitro cell experiments showed that CFIE promoted the proliferation, migration and angiogenesis of HUVECs, and also affected the expression of pathway-related proteins. In vivo experiments showed that CFIE increased the expression of pathway-related proteins in wound tissue and promoted the formation of blood vessels. CONCLUSIONS: In summary, this study systematically demonstrated the possible therapeutic effects and mechanisms of CFIE on DU through network pharmacology analysis and experimental verification. The results revealed that CFIE can accelerate the angiogenesis of diabetic wounds through the PI3K/AKT and HIF-1α signalling pathways, ultimately promoting the healing of diabetic wounds.


Subject(s)
Diabetes Mellitus , Drugs, Chinese Herbal , Plant Extracts , Terminalia , Animals , Mice , Humans , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Tandem Mass Spectrometry , Wound Healing , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
9.
J Ethnopharmacol ; 318(Pt B): 117050, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37595814

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Coptis chinensis Franch. polysaccharide (CCP) and berberine (BBR) are the primary active components of Coptis chinensis Franch. BBR is clinically used for the treatment of intestinal infections and gastroenteritis. CCP was also reported to be effective for the treatment of ulcerative colitis (UC). However, whether CCP combined with BBR shows a synergistic effect on the treatment of UC has not been elucidated yet. AIM OF THE STUDY: This study aspired to investigate the therapeutic effect and the possible mechanisms of the combination of CCP with BBR on chronic UC. MATERIALS AND METHODS: By periodic administration of dextran sulfate sodium (DSS) to C57BL/6J mice, chronic UC model mice were induced. CCP (15 mg/kg), BBR (50 mg/kg), and CCP.BBR (a combination of 15 mg/kg CCP and 50 mg/kg BBR) were orally administered to the model mice for 10 days. Changes of body weight, disease activity index, colon length, organ index, histopathological damage, expression of cytokines, and intestinal tight junction proteins were determined to evaluate the therapeutic effects. 16S rDNA sequencing, targeted short-chain fatty acid metabolomics, qPCR, and western blotting were performed to elucidate the potential mechanism. RESULTS: Both CCP and BBR alleviated UC via improving colon pathological damage, inhibiting the inflammatory response, and regulating the expression of intestinal tight junction proteins. The combination of CCP with BBR showed a more substantial therapeutic effect via increasing the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, thereby increasing the contents of SCFAs in vivo and activating AhR/IL-22 pathway. CONCLUSION: The combination of CCP and BBR showed a synergistic effect on the therapy of chronic UC and the mechanism was associated with regulating gut microbiota and activating AhR/IL-22 pathway.


Subject(s)
Berberine , Colitis, Ulcerative , Gastrointestinal Microbiome , Animals , Mice , Mice, Inbred C57BL , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Berberine/pharmacology , Berberine/therapeutic use , Coptis chinensis , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Interleukin-22
10.
Ecotoxicol Environ Saf ; 264: 115396, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37625336

ABSTRACT

Organophosphorus flame retardants (OPFRs), including 2-ethylhexyl diphenyl phosphate (EHDPHP), are prevalent in everyday life due to their broad usage in fields such as healthcare, electronics, industry, and sports. These compounds, added to polymers through physical mixing, can leach into the environment, posing a risk to humans through direct contact or the food chain. Despite known associations with health issues like endocrine disruption, neurotoxicity, and reproductive toxicity, the implications of perinatal EHDPHP exposure on both mothers and offspring are still unclear. This study aimed to investigate the neuroinflammatory effects of EHDPHP and the potential mitigating role of inulin. Pregnant C57 mice were administered either a corn oil control or an EHDPHP solution (300 µg/kg bw/d) from gestation day 7 (GD7) to postnatal day 21 (PND21). Concurrently, mice were provided either regular drinking water or water supplemented with 1% inulin. We found that EHDPHP significantly increased the serum levels of IL-1ß, IL-6, and MDA, but decreased SOD levels in both mothers and pups. These effects were reversed by inulin supplementation. RNA-sequencing revealed that EHDPHP induced inflammation and oxidative stress through the TLR4/NF-κB pathway, which was mitigated by inulin. In conclusion, inulin ameliorated EHDPHP-induced neuroinflammation and oxidative stress in both mothers and offspring, highlighting its potential therapeutic role.


Subject(s)
Flame Retardants , Phosphates , Pregnancy , Mice , Humans , Female , Animals , Organophosphates/toxicity , Inulin , Neuroinflammatory Diseases , Oxidative Stress , Flame Retardants/toxicity
11.
Chin Med ; 18(1): 47, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37127639

ABSTRACT

BACKGROUND: Bao-Gan-Xing-Jiu-Wan (BGXJW) is a clinical experience-based Chinese herbal formula. Its efficacy, pharmacological safety, targeted function, process quality, and other aspects have met the evaluation standards and the latest requirements of preparations. It could prevent and alleviate the symptoms of drunkenness and alcoholic liver injury clinically. The present work aims to elucidate whether BGXJW could protect against drunkenness and alcoholic liver disease in mice and explore the associated mechanism. MATERIAL AND METHODS: We used acute-on-chronic (NIAAA) mice model to induce alcoholic steatosis, and alcohol binge-drinking model to reappear the drunk condition. BGXJW at indicated doses were administered by oral gavage respectively to analyze its effects on alcoholic liver injury and the associated molecular mechanisms. RESULTS: BGXJW had no cardiac, hepatic, renal, or intestinal toxicity in mice. Alcoholic liver injury and steatosis in the NIAAA mode were effectively prevented by BGXJW treatment. BGXJW increased the expression of alcohol metabolizing enzymes ADH, CYP2E1, and ALDH2 to enhance alcohol metabolism, inhibited steatosis through regulating lipid metabolism, counteracted alcohol-induced upregulation of lipid synthesis related proteins SREBP1, FASN, and SCD1, meanwhile it enhanced fatty acids ß-oxidation related proteins PPAR-α and CPT1A. Alcohol taken enhanced pro-inflammatory TNF-α, IL-6 and down-regulated the anti-inflammatory IL-10 expression in the liver, which were also reversed by BGXJW administration. Moreover, BGXJW significantly decreased the blood ethanol concentration and alleviated drunkenness in the alcohol binge-drinking mice model. CONCLUSIONS: BGXJW could effectively relieve drunkenness and prevent alcoholic liver disease by regulating lipid metabolism, inflammatory response, and alcohol metabolism.

12.
Fitoterapia ; 166: 105460, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36801349

ABSTRACT

Two new verticillane-diterpenoids (1 and 2) were isolated from the gum resin Boswellia sacra. Their structures were elucidated by physiochemical and spectroscopic analysis, as well as ECD calculation. In addition, the in vitro anti-inflammatory activities of the isolated compounds were evaluated by determining the inhibitory effects on lipopolysaccharide (LPS)-induced NO production in RAW 264.7 mouse monocyte-macrophages. The results showed that compound 1 exhibited significant inhibitory effect on NO generation with an IC50 value of 23.3 ± 1.7 µM suggesting that it might be a candidate for an anti-inflammatory agent. Furthermore, 1 potently inhibited the release of inflammatory cytokines IL-6 and TNF-α induced by LPS in a dose-dependent manner. Using Western blot and Immunofluorescence methods, compound 1 was found to inhibit inflammation mainly by restraining the activation of NF-κB pathway. And in the MAPK signaling pathway, it was found to have inhibitory effects on the phosphorylation of JNK and ERK proteins and have no effect on the phosphorylation of p38 protein.


Subject(s)
Boswellia , Diterpenes , Animals , Mice , NF-kappa B/metabolism , Boswellia/chemistry , Lipopolysaccharides/pharmacology , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , RAW 264.7 Cells
13.
Biotechnol Appl Biochem ; 70(1): 387-402, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35661413

ABSTRACT

Based on transcriptome sequencing and molecular biology, the active ingredient of Galla chinensis in the treatment of diabetic foot ulcers was identified, and its mechanism of action was analyzed.


(1) Searching for the main components of the compounds contained in G. chinensis in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature research. (2) Prediction of their targets using the PubChem, SwissTargetPrediction, and BATMAN databases. (3) The CTD, Genecards. and NCBI databases were used to mine the transcriptome sequencing data for target genes related to diabetic foot ulcers. (4) Cytoscape 3.7.0 software was used to construct protein/gene interaction network maps for G. chinensis. (5) GO and KEGG analysis was carried out using the DAVID database. (6) Heatmap and volcano map analysis was carried out with R software. (7) The preliminary validation and visualization of molecular docking were performed using AutoDockVina and PyMOL software. After the screening of TCMSP and literature research, we obtained nine active ingredients of G. chinensis, 53 targets for diabetic foot ulcers; 40 biological processes, 30 cell compositions, and 30 molecular functions by GO analysis; and 24 signaling pathways, including the HIF-1 signaling pathway and VEGF signaling pathway. were obtained by KEGG analysis. The molecular docking results showed that the main active ingredients of Galla chinensis had good binding activities with their corresponding target proteins. In this study, G. chinensis was analyzed for its potential value in the treatment of diabetic foot ulcers due to its anti-inflammatory and wound-healing effects.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Drugs, Chinese Herbal , Humans , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation , Diabetic Foot/drug therapy
14.
J Ethnopharmacol ; 302(Pt A): 115890, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36336222

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Streptocaulon juventas (Lour.) Merr. (SJ), a traditional Chinese folk medicine, has been widely used for the treatment of dysentery and traumatic injuries since ancient times. However, the mechanisms underlying its wound healing activity remain unclear. AIM OF THE STUDY: The aim of this study was to evaluate the wound healing activity of SJ and clarify the underlying molecular mechanisms. MATERIALS AND METHODS: The wound healing activity of an ethanol extract of SJ (ESJ) was confirmed in rat full-thickness wound models. UPLC-Q-TOF-MS/MS was used to analyze the composition of ESJ. Potential molecular targets and signaling pathways involved in the wound healing activity of ESJ were predicted using network pharmacology and transcriptomic analyses. In addition, the L929 cells were used to evaluate the in vitro wound healing activity of ESJ and to verify the predicted pathways. RESULTS: In rat wound models, ESJ significantly accelerated wound healing and promoted hydroxyproline production in wounds. Network pharmacology and transcriptomic analyses results revealed that ESJ might promote wound healing by activating the AKT and MAPK pathways. In L929 cells, ESJ significantly promoted cell proliferation, migration, and expression of collagen I and α-SMA. Additionally, ESJ treatment increased the phosphorylation of AKT, mTOR, ERK, and p38 in a time- and dose-dependent manner. CONCLUSIONS: ESJ significantly promoted wound healing in vivo and in vitro. AKT-mTOR and ERK-p38 signaling pathways were involved in the wound healing activity of ESJ.


Subject(s)
Apocynaceae , Proto-Oncogene Proteins c-akt , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Tandem Mass Spectrometry , Transcriptome , Network Pharmacology , Wound Healing , TOR Serine-Threonine Kinases/metabolism
15.
Biosci. j. (Online) ; 39: e39017, 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1415905

ABSTRACT

Tillering onion is a herbaceous plant belonging to the Liliaceae family. We cloned the cDNAs of the actin gene (AcACT, GenBank: MF919598) of tillering onion using rapid amplification of the cDNA ends. The full-length cDNA of AcACT was 1,357 bp long with an open reading frame of 1,131 bp encoding 376 amino acids. The amino acid sequence of AcACT shared > 96% similarity with the amino acid sequences of other ACTs and was found (by means of phylogenetic tree analysis) to be closely related to those of Ananas comosus and Papaver somniferum. AcACT expressions showed no significant differences (p > 0.01) in two cultivars L-SH and L-SY over three growth periods and under suitable conditions, low temperature, and short-day conditions. In addition, AcACT was used as an internal reference gene to analyse the expression of the alliinase gene (AcALL). AcALL expression trends in the roots, stems and leaves were consistent with those of diallyl disulphide and diallyl trisulphide. Thus, AcACT is highly conserved and can be used as a suitable internal reference gene when analysing gene expression in tillering onion.


Subject(s)
Actins , Onions
16.
Am J Respir Cell Mol Biol ; 67(6): 680-694, 2022 12.
Article in English | MEDLINE | ID: mdl-36150095

ABSTRACT

With the rapid development of nanotechnology, the risks of accidental and/or occupational exposure to zinc oxide nanoparticles (ZnONPs) are increasing. Inhalation of ZnONPs induces metal fume fever in humans and acute lung injury (ALI) in animal models. Although the intestinal microbiota is considered an important modulator of various diseases, the role and mechanism of intestinal microbiota in the pathology of ZnONP-induced ALI are unclear. Herein, we established an intratracheal instillation of a ZnONP-induced ALI mouse model and found that the inhalation of ZnONPs caused ALI along with a perturbation of intestinal flora. Antibiotic cocktail treatment-mediated depletion of intestinal microbiota aggravated ZnONP-induced ALI, and in contrast, fecal microbiota transplantation-mediated restoration of intestinal microbiota exerted the opposite effects. A decrease in short-chain fatty acids, the intestinal microbiota-derived metabolites in the plasma-in particular, acetic acid and propionic acid-occurred after exposure to ZnONPs. It is important to note that supplementation with propionic acid, but not acetic acid, ameliorated ZnONP-induced ALI. We also showed that the source of inflammatory cytokines might partially be the infiltration of macrophages. Supplementation with propionic acid was found to act on macrophages through the receptor GPR43, because knockdown of GPR43 sharply reversed the protective effects of propionic acid during the ZnONP-induced inflammatory response and oxidative stress in both primary alveolar macrophages and RAW 264.7 macrophage cell lines. Altogether, a novel gut-lung axis mechanism is revealed in which intestinal microbiota and their derived metabolite propionic acid play protective roles against ZnONP-induced ALI and suggest that fecal microbiota transplantation and supplementation with propionic acid are potential remedy strategies.


Subject(s)
Acute Lung Injury , Gastrointestinal Microbiome , Nanoparticles , Zinc Oxide , Mice , Humans , Animals , Zinc Oxide/pharmacology , Propionates/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acetates
17.
Molecules ; 27(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36014464

ABSTRACT

Intestinal ischemia/reperfusion (II/R) injury is a common life-threatening complication with high morbidity and mortality. Chebulae Fructus Immaturus, the unripe fruit of Terminalia chebula Retz., also known as "Xiqingguo" or "Tibet Olive" in China, has been widely used in traditional Tibetan medicine throughout history. The phenolic acids' extract of Chebulae Fructus Immaturus (XQG for short) has exhibited strong antioxidative, anti-inflammation, anti-apoptosis, and antibacterial activities. However, whether XQG can effectively ameliorate II/R injuries remains to be clarified. Our results showed that XQG could effectively alleviate II/R-induced intestinal morphological damage and intestinal barrier injury by decreasing the oxidative stress, inflammatory response, and cell death. Transcriptomic analysis further revealed that the main action mechanism of XQG protecting against II/R injury was involved in activating PPARα and inhibiting the NF-κB-signaling pathway. Our study suggests the potential usage of XQG as a new candidate to alleviate II/R injury.


Subject(s)
Hydroxybenzoates/pharmacology , Reperfusion Injury , Terminalia , Animals , Mice , NF-kappa B/metabolism , PPAR alpha , Plant Extracts , Reperfusion Injury/drug therapy , Terminalia/metabolism
18.
Food Funct ; 13(18): 9602-9609, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36000551

ABSTRACT

The preventive and therapeutic effects of herbal supplementation containing Ginseng, Lilii Bulbus, and Poria (GLP) on inflammation and oxidative stress in healthy adults have been demonstrated in our previous studies. However, the underlying mechanisms of organism protection by GLP remain unclarified, and few studies have used metabolomics to investigate comprehensive changes before and after GLP supplementation. Based on previous research, we conducted a placebo-controlled trial among 82 healthy adults in Wuhan, China, using a metabolomics approach with ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) and multivariate statistical methods to analyze serum metabolite alterations in participants before and after GLP supplementation. Furthermore, 14 discriminant metabolites related to lipid metabolism, inflammation and oxidative stress, energy metabolism, and coenzyme A metabolism were significantly different between the before- and after-GLP groups (P < 0.0001). Nine metabolites were significantly decreased in the serum samples from the after-GLP group compared with the before-GLP group, while five metabolites were significantly increased. These metabolites could be critical components associated with the anti-inflammatory, antioxidant, and hypolipidemic activities of GLP, indicating the potential complementary role of GLP supplements in the primary prevention of dysfunctional metabolism caused by potential diseases such as cardiovascular disease. This study provides a valuable reference for cardiovascular health protection and disease prevention.


Subject(s)
Panax , Poria , Adult , Antioxidants , Chromatography, High Pressure Liquid/methods , Coenzyme A , Dietary Supplements , Humans , Inflammation , Metabolome , Metabolomics/methods , Panax/chemistry , Tandem Mass Spectrometry
19.
Front Chem ; 10: 963004, 2022.
Article in English | MEDLINE | ID: mdl-36003616

ABSTRACT

Although medicinal natural products and their derivatives have shown promising effects in disease therapies, they usually suffer the drawbacks in low solubility and stability in the physiological environment, low delivery efficiency, side effects due to multi-targeting, and low site-specific distribution in the lesion. In this review, targeted delivery was well-guided by liposomal formulation in the aspects of preparation of functional liposomes, liposomal medicinal natural products, combined therapies, and image-guided therapy. This review is believed to provide useful guidance to enhance the targeted therapy of medicinal natural products and their derivatives.

20.
Front Pharmacol ; 13: 885484, 2022.
Article in English | MEDLINE | ID: mdl-35645789

ABSTRACT

Chronic and unhealed wound is a serious public problem, which brings severe economic burdens and psychological pressure to patients. Various botanical drugs in traditional Chinese medicine have been used for the treatment of wounds since ancient time. Nowadays, multiple wound healing therapeutics derived from botanical drugs are commercially available worldwide. An increasing number of investigations have been conducted to elucidate the wound healing activities and the potential mechanisms of botanical drugs in recent years. The aim of this review is to summarize the botanical drugs in traditional Chinese medicine with wound healing properties and the underlying mechanisms of them, which can contribute to the research of wound healing and drug development. Taken together, five botanical drugs that have been developed into commercially available products, and 24 botanical drugs with excellent wound healing activities and several multiherbal preparations are reviewed in this article.

SELECTION OF CITATIONS
SEARCH DETAIL