Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chin J Nat Med ; 21(2): 99-112, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36871986

ABSTRACT

Osteoarthritis is a prevalent global joint disease, which is characterized by inflammatory reaction and cartilage degradation. Cyasterone, a sterone derived from the roots of Cyathula officinalis Kuan, exerts protective effect against several inflammation-related diseases. However, its effect on osteoarthritis remains unclear. The current study was designed to investigate the potential anti-osteoarthritis activity of cyasterone. Primary chondrocytes isolated from rats induced by interleukin (IL)-1ß and a rat model stimulated by monosodium iodoacetate (MIA) were used for in vitro and in vivo experiments, respectively. The results of in vitro experiments showed that cyasterone apparently counteracted chondrocyte apoptosis, increased the expression of collagen II and aggrecan, and restrained the production of the inflammatory factors inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), metalloproteinase-3 (MMP-3), and metalloproteinase-13 (MMP-13) induced by IL-1ß in chondrocytes. Furthermore, cyasterone ameliorated the inflammation and degenerative progression of osteoarthritis potentially by regulating the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. For in vivo experiments, cyasterone significantly alleviated the inflammatory response and cartilage destruction of rats induced by monosodium iodoacetate, where dexamethasone was used as the positive control. Overall, this study laid a theoretical foundation for developing cyasterone as an effective agent for the alleviation of osteoarthritis.


Subject(s)
Chondrocytes , NF-kappa B , Animals , Rats , Iodoacetic Acid , Inflammation , MAP Kinase Signaling System , Apoptosis
2.
Phytomedicine ; 104: 154339, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35870375

ABSTRACT

BACKGROUND: As a prolonged autoimmune disorder, rheumatoid arthritis (RA) is characterised by synovial hyperplasia and the erosion of bone and cartilage. Magnoflorine (MAG) is the main component purified from Clematis manshurica Rupr. Recent studies have shown that MAG has anti-inflammatory, antioxidant, and immunosuppressive effects, which are relevant to anti-RA activities. OBJECTIVE: The current investigation was conducted to explore the anti-RA effects of MAG and to discover the possible molecular mechanisms. METHODS: In vitro experiments, CCK-8, wound healing, and transwell assays were utilized to evaluate the anti-proliferative, anti-migratory, and anti-invasive activities of MAG, respectively. The rate of cell distribution and cell apoptosis were evaluated by flow cytometry. ROS generation was detected by DCFH-DA staining. Western blotting, quantitative real-time polymerase chain reaction assay, and immunofluorescent staining were employed to test the anti-RA effect of MAG as well as to explore the potential mechanisms by evaluating related gene and protein expression. For in vivo experiments, an adjuvant-induced arthritis (AIA) rat model was established. The related parameters were measured in rats. Then, rats were sacrificed, and ankle joints were collected for histopathological analysis and observation. RESULTS: MAG significantly decreased the proliferation, migration, invasion, and reactive oxygen species levels in IL-1ß-treated MH7A cells. Furthermore, MAG promoted cell apoptosis by increasing Bax levels and decreasing Bcl-2 levels. MAG also induced cell cycle arrest. Inflammatory cytokines (iNOS, COX-2, IL-6, and IL-8) and MMPs (MMP-1, 2, 3, 9, and 13) were reduced by MAG treatment. Molecular analysis revealed that MAG exerted anti-RA effects by partly inhibiting the PI3K/Akt/NF-κB signalling axis and activating the Keap1-Nrf2/HO-1 signalling pathway. In vivo studies have revealed that MAG treatment substantially improved severe symptoms in AIA rats, and these curative effects were linked to the attenuation of inflammatory responses. CONCLUSION: These results first suggested that MAG exhibits anti-arthritic effects in IL-1ß-treated MH7A cells and AIA rat models. Thus, MAG may be used as a new drug to treat RA clinically.


Subject(s)
Arthritis, Rheumatoid , NF-kappa B , Animals , Apoptosis , Aporphines , Arthritis, Rheumatoid/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats
3.
J Ethnopharmacol ; 284: 114791, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34737112

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The dried aboveground part of Geranium Wilfordii Maxim. (G. Wilfordii) is a traditional Chinese herbal medicine named lao-guan-cao. It has long been used for dispelling wind-dampness, unblocking meridians, and stopping diarrhea and dysentery. Previous investigations have revealed that 50% ethanolic extract of G. Wilfordii has anti-inflammatory and anti-proliferation activities on TNF-α induced murine fibrosarcoma L929 cells. Corilagin (COR) is a main compound in G. Wilfordii with the content up to 1.69 mg/g. Pharmacology study showed that COR has anti-inflammatory, anti-tumor, anti-microorganism, anti-oxidant, and hepatoprotective effects. However, there is no any investigation on its anti-proliferation and anti-inflammation effects in rheumatoid arthritis (RA). AIM OF THE STUDY: The present study aimed to evaluate the potential pharmacological mechanisms of anti-proliferation and anti-inflammation effects of COR in RA. MATERIALS AND METHODS: In vitro, MH7A cells model induced by IL-1ß was used. The anti-proliferation activity of COR was assessed by Cell Counting Kit-8 (CCK-8) assay, and the anti-migration and anti-invasion activity of COR was determined by wound healing assay and transwell assay, respectively. Furthermore, apoptosis assay by flow cytometer was used to measure the pro-apoptotic effect of COR. The mRNA expressions of Bax, Bcl-2, IL-6, IL-8, MMP-1, MMP-2, MMP-3, MMP-9, COX-2, and iNOS were measured by qRT-PCR, and related protein were further verified by ELISA kits or Western blot. Moreover, protein levels associated with NF-κB and MAPK signaling pathways of p65, P-p65, IκBα, P-IκBα, ERK1/2, P-ERK1/2, JNK, P-JNK1/2/3, p38, and P-p38 were determined by Western blot. The nuclear translocation of NF-κB-p65 was detected by immunofluorescent staining. In vivo, adjuvant-induced arthritis (AIA) rat model was used, and the body weight, paw swelling, and arthritis score during the entire period were measured. Histopathological analysis of joints of synovial tissues was also determined. The expression of pro-inflammatory cytokines in serum including IL-6, TNF-α, IL-1ß, and IL-17 were measured. RESULTS: The in vitro results showed that COR could dose-dependently inhibit the proliferation, migration, and invasion of IL-1ß-induced MH7A cells, as well as promote its apoptosis. Moreover, it also suppressed the over-expression of Bcl-2, IL-6, IL-8, MMP-1, MMP-2, MMP-3, MMP-9, COX-2, and iNOS while up-regulated the level of Bax. Besides, the ratios of P-p65/p65, P-IκBα/IκBα, P-ERK/ERK, P-JNK/JNK, and P-p38/p38 were decreased, and the nuclear translocation of p65 induced by IL-1ß was blocked by COR. In vivo results indicated that COR significantly reduced the paw swelling and arthritis score in AIA rats, and inhibited synovial tissue hyperplasia and erosion, as well as inflammatory cells infiltration. It also decreased the serum pro-inflammatory cytokines (IL-6, TNF-α, IL-1ß, and IL-17) production. CONCLUSION: These results revealed that COR exerted anti-rheumatoid arthritis effect, and its underlying mechanisms may be related to inhibiting the proliferation, migration, and invasion of synovial fibroblasts, enhancing cell apoptosis, and suppressing inflammatory responses via downregulating NF-κB and MAPK signaling pathways.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Cell Proliferation/drug effects , Glucosides/therapeutic use , Hydrolyzable Tannins/therapeutic use , Inflammation/chemically induced , Animals , Gene Expression Regulation/drug effects , Glucosides/chemistry , Humans , Hydrolyzable Tannins/chemistry , Inflammation/drug therapy , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Male , Molecular Structure , NF-kappa B , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL