Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phytomedicine ; 96: 153910, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35026502

ABSTRACT

BACKGROUND: Bone cancer pain (BCP) is one of the most severe complications in cancer patients. However, the pharmacological therapeutic approaches are limited. Luteolin, a major component of flavones, is widely distributed in plants and plays a critical role in the antinociceptive effects, but whether luteolin could alleviate cancer pain and its underlying mechanisms are not known. HYPOTHESIS/PURPOSE: This study investigated the molecular mechanisms by which luteolin reduced BCP. METHODS: Behavioral, pharmacological, immunohistochemical, and biochemical approaches were used to investigate the effect of luteolin on BCP. RESULTS: Luteolin treatment ameliorated Lewis lung cancer (LLC)-induced bone pain in mice in a dose-dependent manner. Luteolin treatment could inhibit the activation of neurons, glial cells, and NOD-like receptor protein 3 (NLRP3) inflammasomes in the dorsal spinal cord in the BCP mouse model. Furthermore, phosphorylated p-38 mitogen-activated protein kinase (MAPK) in the spinal dorsal horn (SDH) was suppressed by luteolin treatment that could influence the analgesic and glial inhibition effects of luteolin. CONCLUSION: Our results demonstrated that luteolin inhibited neuroinflammation by obstructing glial cell and NLRP3 inflammasome activation via modulating p38 MAPK activity in SDH, ultimately improving LLC-induced BCP.


Subject(s)
Inflammasomes , Lung Neoplasms , Animals , Humans , Luteolin/pharmacology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Proteins , Neuroinflammatory Diseases , Pain , Rats , Rats, Sprague-Dawley , Spinal Cord Dorsal Horn
SELECTION OF CITATIONS
SEARCH DETAIL