Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Food Sci ; 85(4): 892-902, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32144764

ABSTRACT

In this study, the effect of chia mucilage (CM) and protein concentrate (CPC) contents on the physicochemical, thermal, mechanical, and optical characteristics of developed films was evaluated. Films were prepared dissolving CM:CPC mixtures (1% w/v) in seven ratios (0:1, 1:4, 1:2, 1:1, 2:1, 4:1, 1:0). Microstructure of treatments with higher CM revealed the formation of polysaccharide granules. A semicrystalline behavior was manifested in 1:0, which decreased as CPC content in the formulations increased. Contact angle values obtained for 1:1 and 2:1 were the highest (61.24° and 62.44°), evidencing less affinity to water than other films. TGA analysis suggest that films showed thermal stability at less than 225 °C. Melting temperatures above 85 °C were found for all films in the evaluated range (50 °C to 200 °C) of DSC analysis. Higher CM concentrations in films increased the force required to break them (13.5 MPa) and their elongation capacity (5.20%). As the CM ratio in formulations was increased, the color difference was lower (ΔE = 27.45), water vapor permeability was higher (10.9 × 10-11  g/m·s·Pa), but transparency was statistically the same for all treatments (6.62 to 7.26). After analyzing all films properties, 2:1 formulation corresponding to 25:75% w/v mixtures of CM:CPC would be the best option for use in food packaging.


Subject(s)
Food Packaging/instrumentation , Plant Extracts/chemistry , Plant Mucilage/chemistry , Plant Proteins/chemistry , Salvia/chemistry , Biodegradable Plastics/chemistry , Biomechanical Phenomena , Hot Temperature , Permeability , Seeds/chemistry , Steam/analysis
2.
Int J Biol Macromol ; 151: 27-35, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32070741

ABSTRACT

Biodegradable films based on agar with glycerol (GLY) as a plasticizer were developed by incorporating hydroalcoholic garlic extract (HGE) on the film surface. The effect of GLY content (0, 15, or 30 wt%) and different concentrations of HGE (0, 0.5, 1, or 1.5 µg/mL) on the physicochemical and transport properties of the films was evaluated. The optical (color and transparency), mechanical (tensile test), transport (diffusion and water vapor transmission rate), thermal (thermogravimetric analysis) structural (infrared spectroscopy and X-ray diffraction), and morphological (scanning electron microscope) properties were analyzed. The impregnation of HGE increased the transparency values and decreased the luminosity, tensile strength, elastic modulus, and crystallinity of the agar films. The formulation of 30 wt% GLY with 1.5 µg/mL HGE, identified as 30 GLY [1.5], showed a similar thermal stability that of a neat agar film. The agar films with 30 wt% GLY showed the lowest diffusion coefficient and water vapor transmission rate, indicating that volatile compounds are slowly released. From the results the formulation 30 GLY [1.5] could be used as a film to transport and to release HGE which is supported by a biodegradable matrix and this system has a potential use as insect semiochemical for plague control.


Subject(s)
Agar/chemistry , Chemical Phenomena , Garlic/chemistry , Pheromones/chemistry , Plant Extracts/chemistry , Algorithms , Biodegradation, Environmental , Models, Theoretical , Steam , Tensile Strength , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL