Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Mol Genet Metab ; 109(1): 28-32, 2013 May.
Article in English | MEDLINE | ID: mdl-23478190

ABSTRACT

The causes of Reye-like syndrome are not completely understood. Dihydrolipoamide dehydrogenase (DLD or E3) deficiency is a rare metabolic disorder causing neurological or liver impairment. Specific changes in the levels of urinary and plasma metabolites are the hallmark of the classical form of the disease. Here, we report a consanguineous family of Algerian origin with DLD deficiency presenting without suggestive clinical laboratory and anatomopathological findings. Two children died at birth from hepatic failure and three currently adult siblings had recurrent episodes of hepatic cytolysis associated with liver failure or Reye-like syndrome from infancy. Biochemical investigation (lactate, pyruvate, aminoacids in plasma, organic acids in urine) was normal. Histologic examination of liver and muscle showed mild lipid inclusions that were only visible by electron microscopy. The diagnosis of DLD deficiency was possible only after genome-wide linkage analysis, confirmed by a homozygous mutation (p.G229C) in the DLD gene, previously reported in patients with the same geographic origin. DLD and pyruvate dehydrogenase activities were respectively reduced to 25% and 70% in skin fibroblasts of patients and were unresponsive to riboflavin supplementation. In conclusion, this observation clearly supports the view that DLD deficiency should be considered in patients with Reye-like syndrome or liver failure even in the absence of suggestive biochemical findings, with the p.G229C mutation screening as a valuable test in the Arab patients because of its high frequency. It also highlights the usefulness of genome-wide linkage analysis for decisive diagnosis advance in inherited metabolic disorders.


Subject(s)
Acidosis, Lactic/pathology , Dihydrolipoamide Dehydrogenase , Liver Failure, Acute/genetics , Maple Syrup Urine Disease/pathology , Reye Syndrome/genetics , Acidosis, Lactic/blood , Acidosis, Lactic/genetics , Acidosis, Lactic/mortality , Acidosis, Lactic/urine , Adult , Algeria , Child , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/metabolism , Female , Humans , Infant , Liver/pathology , Liver Failure, Acute/blood , Liver Failure, Acute/mortality , Liver Failure, Acute/pathology , Liver Failure, Acute/urine , Male , Maple Syrup Urine Disease/blood , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/mortality , Maple Syrup Urine Disease/urine , Muscles/pathology , Mutation , Reye Syndrome/metabolism , Reye Syndrome/mortality , Reye Syndrome/physiopathology
2.
J Inherit Metab Dis ; 33 Suppl 3: S443-53, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20978941

ABSTRACT

Ethylmalonic encephalopathy (EE) is a rare metabolic disorder caused by dysfunction of ETHE1, a mitochondrial dioxygenase involved in hydrogen sulfide (H2S) detoxification. Patients present in infancy with psychomotor retardation, chronic diarrhea, orthostatic acrocyanosis and relapsing petechiae. High levels of lactic acid, ethymalonic acid (EMA) and methylsuccinic acid (MSA) are detected in body fluids. Several pathways may contribute to the pathophysiology, including isoleucine, methionine and fatty acid metabolism. We report on a 15-month-old male presenting with typical EE associated with a homozygous ETHE1 mutation. We investigated oral isoleucine (150 mg/kg), methionine (100 mg/kg), fatty acid loading tests and isoleucine-restricted diet (200 mg/day) for any effects on several metabolic parameters. Before loading tests or specific dietary interventions, EMA, C4-C5 acylcarnitines and most acylglycines were elevated, indicating functional deficiency of short chain acyl-CoA (SCAD) as well as all branched acyl-CoA dehydrogenases. Excretion of EMA and n-butyrylglycine increased following each of the loads, and isoleucine led to increased levels of derivative metabolites. An isoleucine-restricted diet for 8 days corrected some of the abnormalities but led to no obvious clinical improvement and only partial effects on EMA. A principal component analysis supports the inference that these dietary conditions have consistent effects on the global metabolic profile. Our results suggest that multiple pathways modulate EMA levels in EE. They might all interact with H2S toxicity. Prolonged dietary interventions involving the restriction for branched aminoacids, fatty acids and methionine could be discussed as auxiliary therapeutical strategies in EE.


Subject(s)
Brain Diseases, Metabolic, Inborn/enzymology , Mitochondrial Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Purpura/enzymology , Amino Acids/therapeutic use , Biomarkers/blood , Biomarkers/urine , Brain Diseases, Metabolic, Inborn/diagnosis , Brain Diseases, Metabolic, Inborn/diet therapy , Brain Diseases, Metabolic, Inborn/genetics , Diet, Protein-Restricted , Dietary Supplements , Genetic Predisposition to Disease , Homozygote , Humans , Infant , Male , Malonates/blood , Malonates/urine , Mitochondrial Proteins/genetics , Mutation , Nucleocytoplasmic Transport Proteins/genetics , Phenotype , Principal Component Analysis , Purpura/diagnosis , Purpura/diet therapy , Purpura/genetics , Treatment Outcome
3.
Sleep ; 28(4): 418-24, 2005 Apr.
Article in English | MEDLINE | ID: mdl-16171286

ABSTRACT

BACKGROUND: Exogenous gamma-hydroxybutyrate (GHB) increases slow-wave sleep and reduces daytime sleepiness and cataplexy in patients with primary narcolepsy. OBJECTIVE: To examine nighttime sleep and daytime sleepiness in a 13-year-old girl homozygous for succinic semialdehyde dehydrogenase (SSADH) deficiency, a rare recessive metabolic disorder that disrupts the normal degradation of 4-aminobutyric acid (GABA), and leads to an accumulation of GHB and GABA within the brain. METHODS: Sleep interview, nighttime polysomnography, Multiple Sleep Latency Tests, and continuous 24-hour in-lab recordings in the patient; overnight polysomnography in her recessive mother and in a 13-year-old female control. RESULTS: During quiet wakefulness, background electroencephalographic activity was slow and composed of 7-Hz activity. Sleep stage 3/4 was slightly increased (28.1% of total sleep period, norms 15%-28%), and the daytime mean sleep latency was short in the patient (3 minutes 42 seconds, norms > 8 minutes). Stage 2 spindles were infrequent in the child (0.18/minute, norms: 1.2-9.2/minute) and her mother (0.65/minute) but normal (4.6/minute) in the control. At the beginning of the second night, a tonic-clonic seizure occurred, followed by a dramatic increase in stage 3/4 sleep, that lasted 46.3 % of the total sleep period, double the normal value. The mother showed a reduced total sleep time and rapid eye movement sleep percentage. DISCUSSION: This suggests that a chronic excess of GABA and GHB induces subtle sleep abnormalities, whereas increased slow-wave sleep evoked by a sudden event (here an epileptic seizure) may be caused by a supplementary increase in GABA and GHB.


Subject(s)
Brain/metabolism , Disorders of Excessive Somnolence/diagnosis , Disorders of Excessive Somnolence/physiopathology , Sleep/physiology , Sodium Oxybate/metabolism , Succinate-Semialdehyde Dehydrogenase/genetics , gamma-Aminobutyric Acid/genetics , gamma-Aminobutyric Acid/metabolism , Adolescent , Brain Diseases, Metabolic, Inborn/blood , Brain Diseases, Metabolic, Inborn/enzymology , Brain Diseases, Metabolic, Inborn/genetics , Electroencephalography , Female , Humans , Lymphocytes/enzymology , Methylmalonyl-CoA Decarboxylase/blood , Polysomnography , Sleep Stages/physiology , Sodium Oxybate/urine , Succinate-Semialdehyde Dehydrogenase/blood , Succinate-Semialdehyde Dehydrogenase/deficiency , Wakefulness/physiology , gamma-Aminobutyric Acid/urine
4.
Mol Genet Metab ; 84(4): 305-12, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15781190

ABSTRACT

A six-day-old girl was referred for severe hepatic failure, dehydratation, axial hypotonia, and both lactic acidosis and ketoacidosis. Biotin-unresponsive pyruvate carboxylase deficiency type B was diagnosed. Triheptanoin, an odd-carbon triglyceride, was administrated as a source for acetyl-CoA and anaplerotic propionyl-CoA. Although this patient succumbed to a severe infection, during the six months interval of her anaplerotic and biochemical management, the following important observations were documented: (1) the immediate reversal (less than 48 h) of major hepatic failure with full correction of all biochemical abnormalities, (2) on citrate supplementation, the enhanced export from the liver of triheptanoin's metabolites, namely 5 carbon ketone bodies, increasing the availability of these anaplerotic substrates for peripheral organs, (3) the demonstration of the transport of C5 ketone bodies-representing alternative energetic fuel for the brain-across the blood-brain barrier, associated to increased levels of glutamine and free gamma-aminobutyric acid (f-GABA) in the cerebrospinal fluid. Considering that pyruvate carboxylase is a key enzyme for anaplerosis, besides the new perspectives brought by anaplerotic therapies in those rare pyruvate carboxylase deficiencies, this therapeutic trial also emphasizes the possible extended indications of triheptanoin in various diseases where the citric acid cycle is impaired.


Subject(s)
Heptanoates/therapeutic use , Pyruvate Carboxylase Deficiency Disease/diet therapy , Pyruvate Carboxylase Deficiency Disease/metabolism , Triglycerides/therapeutic use , Autopsy , Brain/metabolism , Brain/pathology , Cells, Cultured , Citrates/therapeutic use , Citric Acid Cycle , Female , Fibroblasts/enzymology , Humans , Hydrocarbons, Chlorinated , Infant , Infant, Newborn , Liver/drug effects , Liver/metabolism , Pregnancy , Propionates/therapeutic use , gamma-Aminobutyric Acid/cerebrospinal fluid , gamma-Aminobutyric Acid/metabolism
5.
Mol Genet Metab ; 82(3): 224-30, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15234336

ABSTRACT

Peroxisomal disorders include a complex spectrum of diseases, characterized by a high heterogeneity from both the clinical and the biochemical points of view. Specific assays are required for the study of peroxisome metabolism. Among these, pipecolic acid evaluation is considered as a supplementary test. We have established the diagnostic role of pipecolic acid in 30 patients affected by a peroxisomal defect (5 Zellweger syndromes, 10 Infantile Refsum diseases, 1 neonatal adrenoleukodystrophy, 6 patients affected by a peroxisomal biogenesis disorder with unclassified phenotype, 1 case of rhizomelic chondrodysplasia punctata (RCDP), 2 acyl-CoA oxidase deficiencies, 2 bifunctional enzyme deficiencies, 2 Refsum diseases, and 1 beta-oxidation deficiency). Pipecolic acid was increased in all generalized peroxisomal disorders, while normal pipecolic acid with abnormal very long chain fatty acid concentrations was strong evidence for a single peroxisomal enzyme deficiency. Unexpectedly, hyperpipecolic acidaemia was found also in a child affected by RCDP and in two patients with Refsum disease. In six patients the suggestion of a peroxisomal disorder was raised by the fortuitous finding of a pipecolic acid peak in amino acid chromatography, routinely performed as a general metabolic screening. For all patients, pipecolic acid proved to be a useful parameter in the biochemical classification of peroxisomal disorders.


Subject(s)
Peroxisomal Disorders/diagnosis , Peroxisomes/metabolism , Pipecolic Acids , Adolescent , Adult , Bile Acids and Salts/blood , Chromatography , Fatty Acids/blood , Female , France , Gas Chromatography-Mass Spectrometry , Humans , Immunoblotting , Infant , Italy , Liver/pathology , Male , Peroxisomes/pathology , Phytanic Acid/blood
SELECTION OF CITATIONS
SEARCH DETAIL