Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Sensors (Basel) ; 22(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35891136

ABSTRACT

This paper presents a radio frequency (RF) triple pole triple throw 3P3T cross antenna switch for cellular mobile devices. The negative biasing scheme was applied to improve the power-handling capability and linearity of the switch by increasing the maximum tolerable voltage drop across the drain and source and reverse biasing the parasitic junction diodes. To avoid signal reflection through the antenna in off-state, all the antenna ports were equipped with 50-ohm termination to provide the pull-down path. Considering the simultaneous operation of antenna ports in different switch cases, the presented T-type pull-down path demonstrated improvement of isolation by over 15 dB. Using stacked switches, the 3P3T handled the input power level of over 35 dBm. The chip was manufactured in 65 nm complementary metal oxide semiconductor (CMOS) silicon on insulator (SOI) technology with a die size of 790 × 730 µm. The proposed structure achieved insertion loss, isolation, and voltage standing wave ratio (VSWR) of less than -0.9 dB, -40 dB, and 1.6, respectively, when the input signal was 3.8 GHz. The measured results prove the implemented switch shows the second and third harmonic distortion performances of less than -60 dBm when the input power level and frequency are 25 dBm and 3.8 GHz, respectively.


Subject(s)
Radio Waves , Semiconductors , Computers, Handheld , Silicon
2.
Sensors (Basel) ; 22(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35684660

ABSTRACT

This paper presents a multi-gain radio frequency (RF) front-end low noise amplifier (LNA) utilizing a multi-core based on the source degeneration topology. The LNA can cover a wide range of input and output frequency matching by using a receiver (RX) switch at the input and a capacitor bank at the output of the LNA. In the proposed architecture here, to avoid the saturation of RX chain, 12 gain steps including positive, 0 dB, and negative power gains are controlled by a mobile industry processor interface (MIPI). The multi-core architecture offers the ability to control the power consumption over different gain steps. In order to avoid the phase discontinuity, the negative gain steps are provided using an active amplification and T-type attenuation path that keeps the phase discontinuity below ±5 degrees between two adjacent power gain steps. Using the multi-core structure, the power consumption is optimized in different power gains. The structure is enhanced with the adaptive variable cores and reactance parameters to maintain different power consumption for different gain steps and remain the output matching in an acceptable operating range. Furthermore, auxiliary linearization circuitries are added to improve the input third intercept point (IIP3) performance of the LNA. The chip is fabricated in 65 nm complementary metal-oxide semiconductor (CMOS) silicon on insulator (SOI) process and the die area is 0.308 mm2. The proposed architecture achieves the IIP3 performance of -10.2 dBm and 8.6 dBm in the highest and lowest power gains, which are 20.5 dB and -11 dB, respectively. It offers the noise figure (NF) performance of 1.15 dB in the highest power gain while it reaches 14 dB when the power gain is -11 dB. The LNA consumes 16.8 mA and 1.33 mA current from a 1 V power supply that is provided by an on-chip low-dropout (LDO) when it operates at the highest and lowest gains, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL