Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
BMC Plant Biol ; 24(1): 56, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38238679

ABSTRACT

Salvia verticillata L. is a well-known herb rich in rosmarinic acid (RA) and with therapeutic values. To better understand the possible roles of phytohormones in the production of phenolic acids in S. verticillata, in this work, we investigated some physiological and biochemical responses of the species to methyl jasmonate (MJ) and multi-walled carbon nanotubes (MWCNTs) as two effective elicitors. The leaves were sprayed with aqueous solutions containing 100 mg L-1 MWCNTs and 100 µM MJ and then harvested during interval times of exposure up to 96 h. The level of abscisic acid, as the first effective phytohormone, was altered in the leaves in response to MJ and MWCNTs elicitation (2.26- and 3.06-fold more than the control, respectively), followed by significant increases (P ˂ 0.05) detected in jasmonic acid and salicylic acid contents up to 8 h after exposure. Obtained data revealed that simultaneously with changes in phytohormone profiles, significant (P ˂ 0.05) rises were observed in the content of H2O2 (8.85- and 9.74-folds of control), and the amount of lipid peroxidation (10.18- and 17.01-folds of control) during the initial times after exposure to MJ and MWCNTs, respectively. Later, the content of phenolic acids increased in the elicited leaves due to changes in the transcription levels of key enzymes involved in their biosynthesis pathways, so 2.71- and 11.52-fold enhances observed in the RA content of the leaves after exposure to MJ and MWCNTs, respectively. It is reasonable to conclude that putative linkages between changes in some phytohormone pools lead to the accumulation of phenolic acids in the leaves of S. verticillata under elicitation. Overall, the current findings help us improve our understanding of the signal transduction pathways of the applied stimuli that led to enhanced secondary metabolite production in medicinal plants.


Subject(s)
Acetates , Nanotubes, Carbon , Salvia , Plant Growth Regulators/pharmacology , Hydrogen Peroxide/pharmacology , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism
2.
Article in English | MEDLINE | ID: mdl-36016682

ABSTRACT

Safranal, crocin, crocetin, and picrocrocin are major known compounds in the stigma extract of Crocus sativus with various medicinal properties. Crocus cancellatus is another Crocus species that grows extensively in Iran's various regions, such as the Kurdistan province. The predominant metabolites and biological properties of C. cancellatus have not yet been investigated. The ingredients of the stigma ethanol extract of C. cancellatus were investigated using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS). The ROIMCR approach was performed to analyze the LC-MS full scan data sets. This method searches the MS regions of interest (ROI) data in the m/z domain and analyses the results using the multivariate curve-resolution alternating least squares (MCR-ALS) chemometrics technique for simultaneous resolution of two extracts. Also, the antiproliferative properties of C. cancellatus against MDA-MB-231 and MCF-7 cancer cells were examined by MTT, dual acridine orange/ethidium bromide test, Annexin V-FITC/PI, and zymography. The GC-MS and LC-MS untargeted metabolomics data analysis of the extract indicated the presence of cytotoxic agents including safranal, crocin, picrocrocin, and crocetin in the stigma ethanol extract of C. cancellatus. Biological tests showed that the viability of MDA-MB-231 and MCF-7 cancer cells is decreased following C. cancellatus treatment in a time- and dose-dependent way in both monolayer and 3D cell cultures. The MCF-7 cell spheroids had greater resistance to the cytotoxic activity of the extract in 3D cell culture than the MDA-MB-231 cell spheroids. The morphological changes of the cells treated with C. cancellatus stigmas extract were indicative of apoptosis. Zymography analysis revealed a similar trend of matrix metallopeptidase-2 (MMP-2) and matrix metallopeptidase-9 (MMP-9) activity in the treated cells with C. cancellatus extract in comparison with doxorubicin treatment as a positive control. The findings of this research indicate that the ethanolic extract of C. cancellatus stigmas was a good source of bioactive metabolites with anticancer activity.

3.
Plant Physiol Biochem ; 150: 27-38, 2020 May.
Article in English | MEDLINE | ID: mdl-32109787

ABSTRACT

Owing to the growing applications of the multi-walled carbon nanotubes (MWCNTs) in the communications and energy industries, they have attracted increasing attention for their effects on the environment and plants. Therefore, we investigated the impact of foliar exposure to MWCNTs on the oxidative stress responses in the Salvia verticillata as a medicinal plant. Furthermore, we evaluated the possible correlations between gene expression and activity of the key enzymes in the phenolic acids biosynthesis pathways and their accumulation in the treated leaves. The leaves of two-month-old plants were sprayed with different concentrations (0-1000 mg L-1) of MWCNTs. Raman's data and Transmission Electron Microscopy images have confirmed the absorption of MWCNTs via epidermal cells layer into the parenchymal cells of the exposed leaves. The results showed that exposure to MWCNTs led to a decrease in the photosynthetic pigments and increases in the oxidative stress indices (enzymatic and non-enzymatic antioxidants) in the leaves with a dose-dependent manner. The content of rosmarinic acid as a main phenolic acid was increased in the MWCNTs-exposed leaves to 50 and 1000 mg L-1, nearly four times relative to the control. Unlike with other examined enzymes, a positive correlation was deduced between the activity and gene expression patterns of the rosmarinic acid synthase with the rosmarinic acid accumulation in the treatments. Overall, MWCNTs at the low concentrations could promote the production of the pharmaceutical metabolites by the changes in the ROS generation. However, at the higher concentrations, MWCNTs were toxic and induced the oxidative damages in S. verticillata.


Subject(s)
Nanotubes, Carbon , Plants, Medicinal , Salvia , Antioxidants/metabolism , Environmental Pollutants/toxicity , Nanotubes, Carbon/toxicity , Oxidative Stress/drug effects , Plants, Medicinal/chemistry , Plants, Medicinal/drug effects , Salvia/drug effects
4.
PLoS One ; 12(9): e0184483, 2017.
Article in English | MEDLINE | ID: mdl-28957336

ABSTRACT

Aggregation of alpha-synuclein (α-SN) is a key pathogenic event in Parkinson's disease (PD) leading to dopaminergic degeneration. The identification of natural compounds inhibiting α-SN aggregation may have a major role in treating PD. Different Scutellaria species are known as valuable medicinal plants, primarily due to their high flavonoid levels. Scutellaria pinnatifida (S. pinnatifida) is endemic to Iran; however, the knowledge of its pharmaceutical properties is limited. Here we report that S. pinnatifida extracts have an anti-fibrillation effect on α-SN aggregation and neuroprotective properties on PC12 and primary dopaminergic neurons. Treatment during α-SN fibril formation with S. pinnatifida extracts showed that the extractions performed with dichloromethane (DCMEx) and n-butanol (BuOHEx) strongly inhibited α-SN fibrillation. TLC-based analysis revealed that S. pinnatifida contains a great amount of flavonoids with high antioxidant properties as shown using a radical scavenging assay. Further analysis using HPLC and Mass spectroscopy on the DCMEx revealed the presence of baicalein in this extract. We then selected the more efficient extracts based on cell viability and ROS scavenging on PC12 cells and tested their neuroprotective properties on primary dopaminergic neurons. Our results showed the extracts strongly protected against α-SN oligomers. Surprisingly, they also neutralized the severe toxicity of paraquat. Therefore, S. pinnatifida may be a potential valuable medicinal herb for further studies related to the treatment of PD.


Subject(s)
Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Scutellaria/chemistry , alpha-Synuclein/toxicity , Animals , Cell Death/drug effects , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Flavonoids/metabolism , Free Radical Scavengers/pharmacology , Humans , Microscopy, Fluorescence , PC12 Cells , Paraquat/toxicity , Plant Roots/chemistry , Protein Multimerization/drug effects , Rats , alpha-Synuclein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL