Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nutrients ; 13(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34444861

ABSTRACT

So far, there is no consistent and convincing theory explaining the pathogenesis of migraines. Vascular disorders, the effect of oxidative stress on neurons, and the contribution of magnesium-calcium deficiencies in triggering cortical depression and abnormal glutaminergic neurotransmission are taken into account. However, there are no reliable publications confirming the role of dietary deficits of magnesium and latent tetany as factors triggering migraine attacks. The aim of the study was to evaluate the influence of latent magnesium deficiency assessed with the electrophysiological tetany test on the course of migraine. The study included: a group of 35 patients (29 women and six men; in mean age 41 years) with migraine and a control group of 24 (17 women and seven men; in mean age 39 years) healthy volunteers. Migraine diagnosis was based on the International Headache Society criteria, 3rd edition. All patients and controls after full general and neurological examination were subjected to a standard electrophysiological ischemic tetany test. Moreover, the level of magnesium in blood serum was tested and was in the normal range in all patients. Then, the incidence of a positive tetany EMG test results in the migraine group and the results in the subgroups with and without aura were compared to the results in the control group. Moreover, the relationship between clinical markers of spasmophilia and the results of the tetany test was investigated in the migraine group. As well as the relationship between migraine frequency and tetany test results. There was no statistically significant difference in the occurrence of the electrophysiological exponent of spasmophilia between the migraine and control group. Neither correlation between the occurrence of clinical symptoms nor the frequency of migraine attacks and the results of the tetany test was stated (p > 0.05). However, there was an apparent statistical difference between the subgroup of migraine patients with aura in relation to the control group (p < 0.05). The result raises hope to find a trigger for migraine attacks of this clinical form, the more that this factor may turn out to be easy to supplement with dietary supplementation.


Subject(s)
Electromyography/methods , Magnesium Deficiency/physiopathology , Migraine Disorders/etiology , Refractory Period, Electrophysiological , Tetany/physiopathology , Adult , Case-Control Studies , Causality , Cell Membrane/physiology , Female , Humans , Magnesium/blood , Magnesium Deficiency/complications , Magnesium Deficiency/diagnosis , Male , Middle Aged , Migraine Disorders/blood , Nutritional Status , Potassium/blood , Tetany/complications , Tetany/diagnosis , Young Adult
2.
Nutrients ; 10(8)2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30081500

ABSTRACT

Animal studies using tests and models have demonstrated that magnesium exerts an antidepressant effect. The literature contains few studies in humans involving attempts to augment antidepressant therapy with magnesium ions. The purpose of our study was to assess the efficacy and safety of antidepressant treatment, in combination with magnesium ions. A total of 37 participants with recurrent depressive disorder who developed a depressive episode were included in this study. As part of this double-blind study, treatment with the antidepressant fluoxetine was accompanied with either magnesium ions (120 mg/day as magnesium aspartate) or placebo. During an 8-week treatment period, each patient was monitored for any clinical abnormalities. Moreover, serum fluoxetine and magnesium levels were measured, and pharmaco-electroencephalography was performed. The fluoxetine + magnesium and fluoxetine + placebo groups showed no significant differences in either Hamilton Depression Rating Scale (HDRS) scores or serum magnesium levels at any stage of treatment. Multivariate statistical analysis of the whole investigated group showed that the following parameters increased the odds of effective treatment: lower baseline HDRS scores, female gender, smoking, and treatment augmentation with magnesium. The parameters that increased the odds of remission were lower baseline HDRS scores, shorter history of disease, the presence of antidepressant-induced changes in the pharmaco-EEG profile at 6 h after treatment, and the fact of receiving treatment augmented with magnesium ions. The limitation of this study is a small sample size.


Subject(s)
Affect/drug effects , Antidepressive Agents, Second-Generation/administration & dosage , Aspartic Acid/administration & dosage , Depressive Disorder/drug therapy , Dietary Supplements , Fluoxetine/administration & dosage , Selective Serotonin Reuptake Inhibitors/administration & dosage , Adult , Aged , Antidepressive Agents, Second-Generation/blood , Aspartic Acid/blood , Depressive Disorder/diagnosis , Depressive Disorder/physiopathology , Double-Blind Method , Female , Fluoxetine/blood , Humans , Male , Middle Aged , Poland , Remission Induction , Selective Serotonin Reuptake Inhibitors/blood , Time Factors , Treatment Outcome , Young Adult
3.
Neural Plast ; 2017: 3682752, 2017.
Article in English | MEDLINE | ID: mdl-28299207

ABSTRACT

Preclinical and clinical studies have demonstrated that zinc possesses antidepressant properties and that it may augment the therapy with conventional, that is, monoamine-based, antidepressants. In this review we aim to discuss the role of zinc in the pathophysiology and treatment of depression with regard to the monoamine hypothesis of the disease. Particular attention will be paid to the recently described zinc-sensing GPR39 receptor as well as aspects of zinc deficiency. Furthermore, an attempt will be made to give a possible explanation of the mechanisms by which zinc interacts with the monoamine system in the context of depression and neural plasticity.


Subject(s)
Biogenic Monoamines/metabolism , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Neuronal Plasticity/physiology , Zinc/administration & dosage , Zinc/metabolism , Animals , Cross-Sectional Studies , Dietary Supplements , Humans
4.
Pharmacol Rep ; 65(3): 547-54, 2013.
Article in English | MEDLINE | ID: mdl-23950577

ABSTRACT

Magnesium is one of the most essential mineral in the human body, connected with brain biochemistry and the fluidity of neuronal membrane. A variety of neuromuscular and psychiatric symptoms, including different types of depression, was observed in magnesium deficiency. Plasma/serum magnesium levels do not seem to be the appropriate indicators of depressive disorders, since ambiguous outcomes, depending on the study, were obtained. The emergence of a new approach to magnesium compounds in medical practice has been seen. Apart from being administered as components of dietary supplements, they are also perceived as the effective agents in treatment of migraine, alcoholism, asthma, heart diseases, arrhythmias, renal calcium stones, premenstrual tension syndrome etc. Magnesium preparations have an essential place in homeopathy as a remedy for a range of mental health problems. Mechanisms of antidepressant action of magnesium are not fully understood yet. Most probably, magnesium influences several systems associated with development of depression. The first information on the beneficial effect of magnesium sulfate given hypodermically to patients with agitated depression was published almost 100 years ago. Numerous pre-clinical and clinical studies confirmed the initial observations as well as demonstrated the beneficial safety profile of magnesium supplementation. Thus, magnesium preparations seem to be a valuable addition to the pharmacological armamentarium for management of depression.


Subject(s)
Antidepressive Agents/metabolism , Depressive Disorder/etiology , Depressive Disorder/metabolism , Magnesium Deficiency/complications , Magnesium/metabolism , Animals , Humans , Magnesium Deficiency/metabolism
5.
Pharmacol Rep ; 60(5): 588-9, 2008.
Article in English | MEDLINE | ID: mdl-19066406

ABSTRACT

The clinical efficacy of current antidepressant therapies is unsatisfactory; antidepressants induce a variety of unwanted effects, and, moreover, their therapeutic mechanism is not clearly understood. Thus, a search for better and safer agents is continuously in progress. Recently, studies have demonstrated that zinc and magnesium possess antidepressant properties. Zinc and magnesium exhibit antidepressant-like activity in a variety of tests and models in laboratory animals. They are active in forced swim and tail suspension tests in mice and rats, and, furthermore, they enhance the activity of conventional antidepressants (e.g., imipramine and citalopram). Zinc demonstrates activity in the olfactory bulbectomy, chronic mild and chronic unpredictable stress models in rats, while magnesium is active in stress-induced depression-like behavior in mice. Clinical studies demonstrate that the efficacy of pharmacotherapy is enhanced by supplementation with zinc and magnesium. The antidepressant mechanisms of zinc and magnesium are discussed in the context of glutamate, brain-derived neurotrophic factor (BDNF) and glycogen synthase kinase-3 (GSK-3) hypotheses. All the available data indicate the importance of zinc and magnesium homeostasis in the psychopathology and therapy of affective disorders.


Subject(s)
Antidepressive Agents/pharmacology , Depressive Disorder/drug therapy , Magnesium Compounds/pharmacology , Zinc Compounds/pharmacology , Animals , Depressive Disorder/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Humans , Magnesium Compounds/metabolism , Receptors, Glutamate/drug effects , Serotonin/physiology , Zinc Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL