Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature ; 570(7760): 236-240, 2019 06.
Article in English | MEDLINE | ID: mdl-31168094

ABSTRACT

Much of the American Arctic was first settled 5,000 years ago, by groups of people known as Palaeo-Eskimos. They were subsequently joined and largely displaced around 1,000 years ago by ancestors of the present-day Inuit and Yup'ik1-3. The genetic relationship between Palaeo-Eskimos and Native American, Inuit, Yup'ik and Aleut populations remains uncertain4-6. Here we present genomic data for 48 ancient individuals from Chukotka, East Siberia, the Aleutian Islands, Alaska, and the Canadian Arctic. We co-analyse these data with data from present-day Alaskan Iñupiat and West Siberian populations and published genomes. Using methods based on rare-allele and haplotype sharing, as well as established techniques4,7-9, we show that Palaeo-Eskimo-related ancestry is ubiquitous among people who speak Na-Dene and Eskimo-Aleut languages. We develop a comprehensive model for the Holocene peopling events of Chukotka and North America, and show that Na-Dene-speaking peoples, people of the Aleutian Islands, and Yup'ik and Inuit across the Arctic region all share ancestry from a single Palaeo-Eskimo-related Siberian source.


Subject(s)
Human Migration/history , Inuit/classification , Inuit/genetics , Phylogeny , Phylogeography , Africa , Alaska , Alleles , Arctic Regions , Asia, Southeastern , Canada , Europe , Genome, Human/genetics , Haplotypes , History, Ancient , Humans , Principal Component Analysis , Siberia/ethnology
3.
Am J Phys Anthropol ; 146(4): 503-14, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21913177

ABSTRACT

Ancient DNA (aDNA) analyses have proven to be important tools in understanding human population dispersals, settlement patterns, interactions between prehistoric populations, and the development of regional population histories. Here, we review the published results of sixty-three human populations from throughout the Americas and compare the levels of diversity and geographic patterns of variation in the ancient samples with contemporary genetic variation in the Americas in order to investigate the evolution of the Native American gene pool over time. Our analysis of mitochondrial haplogroup frequencies and prehistoric population genetic diversity presents a complex evolutionary picture. Although the broad genetic structure of American prehistoric populations appears to have been established relatively early, we nevertheless identify examples of genetic discontinuity over time in select regions. We discuss the implications this finding may have for our interpretation of the genetic evidence for the initial colonization of the Americas and its subsequent population history.


Subject(s)
American Indian or Alaska Native/genetics , American Indian or Alaska Native/history , DNA, Mitochondrial/genetics , Emigration and Immigration/history , Americas , Analysis of Variance , Haplotypes , History, 21st Century , History, Ancient , Humans , Polymorphism, Single Nucleotide , Principal Component Analysis
4.
Curr Biol ; 20(4): R202-7, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20178768

ABSTRACT

The Americas, the last continents to be entered by modern humans, were colonized during the late Pleistocene via a land bridge across what is now the Bering strait. However, the timing and nature of the initial colonization events remain contentious. The Asian origin of the earliest Americans has been amply established by numerous classical marker studies of the mid-twentieth century. More recently, mtDNA sequences, Y-chromosome and autosomal marker studies have provided a higher level of resolution in confirming the Asian origin of indigenous Americans and provided more precise time estimates for the emergence of Native Americans. But these data raise many additional questions regarding source populations, number and size of colonizing groups and the points of entry to the Americas. Rapidly accumulating molecular data from populations throughout the Americas, increased use of demographic models to test alternative colonization scenarios, and evaluation of the concordance of archaeological, paleoenvironmental and genetic data provide optimism for a fuller understanding of the initial colonization of the Americas.


Subject(s)
Biological Evolution , Cultural Evolution , Emigration and Immigration , Indians, North American/genetics , Indians, North American/history , Motor Activity/genetics , Archaeology , DNA, Mitochondrial/genetics , Genetic Markers/genetics , Haplotypes/genetics , History, Ancient , Humans , Models, Theoretical
5.
Hum Biol ; 82(5-6): 677-93, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21417889

ABSTRACT

The Aleutian Islands were colonized, perhaps several times, from the Alaskan mainland. Earlier work documented transitions in the relative frequencies of mtDNA haplogroups over time, but little is known about potential source populations for prehistoric Aleut migrants. As part of a pilot investigation, we sequenced the mtDNA first hypervariable region (HVRI) in samples from two archaeological sites on the Alaska Peninsula (the Hot Springs site near Port Moller, Alaska; and samples from a cluster of sites in the Brooks River area near Katmai National Park and Preserve) and one site from Prince William Sound (Mink Island). The sequences revealed not only the mtDNA haplogroups typically found in both ancient and modern Aleut populations (A2 and D2) but also haplogroups B2 and D1 in the Brooks River samples and haplogroup D3 in one Mink Islander. These preliminary results suggest greater mtDNA diversity in prehistoric populations than previously observed and facilitate reconstruction of migration scenarios from the peninsula into the Aleutian archipelago in the past.


Subject(s)
DNA, Mitochondrial/genetics , Inuit/history , Alaska , Demography , Gene Amplification , Genetic Variation , Geography , Haplotypes , History, Ancient , Humans , Inuit/genetics , Phylogeny , Phylogeography/statistics & numerical data , Pilot Projects , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL