Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Biol Chem ; 296: 100614, 2021.
Article in English | MEDLINE | ID: mdl-33839154

ABSTRACT

Epigenetic modifications have emerged as critical regulators of virulence genes and stage-specific gene expression in Plasmodium falciparum. However, the specific roles of histone core epigenetic modifications in regulating the stage-specific gene expression are not well understood. In this study, we report an unconventional trimethylation at lysine 64 on histone 3 (H3K64me3) and characterize its functional relevance in P. falciparum. We show that PfSET4 and PfSET5 proteins of P. falciparum methylate H3K64 and that they prefer the nucleosome as a substrate over free histone 3 proteins. Structural analysis of PfSET5 revealed that it interacts with the nucleosome as a dimer. The H3K64me3 mark is dynamic, being enriched in the ring and trophozoite stages and drastically reduced in the schizont stages. Stage-specific global chromatin immunoprecipitation -sequencing analysis of the H3K64me3 mark revealed the selective enrichment of this methyl mark on the genes of exported family proteins in the ring and trophozoite stages and a significant reduction of the same in the schizont stages. Collectively, our data identify a novel epigenetic mark that is associated with the subset of genes encoding for exported proteins, which may regulate their expression in different stages of P. falciparum.


Subject(s)
Erythrocytes/parasitology , Histone Code , Histones/chemistry , Lysine/chemistry , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism , DNA Methylation , Histones/genetics , Histones/metabolism , Humans , Lysine/genetics , Lysine/metabolism , Malaria, Falciparum/genetics , Malaria, Falciparum/metabolism , Nucleosomes/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics
2.
ACS Chem Biol ; 8(3): 543-8, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23294304

ABSTRACT

In order to discover new inhibitors of the DNA methyltransferase 3A/3L complex, we used a medium-throughput nonradioactive screen on a random collection of 1120 small organic compounds. After a primary hit detection against DNA methylation activity of the murine Dnmt3A/3L catalytic complex, we further evaluated the EC50 of the 12 most potent hits as well as their cytotoxicity on DU145 prostate cancer cultured cells. Interestingly, most of the inhibitors showed low micromolar activities and little cytotoxicity. Dichlone, a small halogenated naphthoquinone, classically used as pesticide and fungicide, showed the lowest EC50 at 460 nM. We briefly assessed the selectivity of a subset of our new inhibitors against hDNMT1 and bacterial Dnmts, including M. SssI and EcoDam, and the protein lysine methyltransferase PKMT G9a and the mode of inhibition. Globally, the tested molecules showed a clear preference for the DNA methyltransferases, but poor selectivity among them. Two molecules including Dichlone efficiently reactivated YFP gene expression in a stable HEK293 cell line by promoter demethylation. Their efficacy was comparable to the DNMT inhibitor of reference 5-azacytidine.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA Methylation/drug effects , DNA/metabolism , Drug Evaluation, Preclinical , Enzyme Inhibitors/analysis , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Animals , Cell Death/drug effects , Cell Proliferation/drug effects , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , HEK293 Cells , Humans , Mice , Molecular Structure , Small Molecule Libraries/analysis , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
3.
BMC Biochem ; 12: 16, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21510884

ABSTRACT

BACKGROUND: Black tea is, second only to water, the most consumed beverage globally. Previously, the inhibition of DNA methyltransferase 1 was shown by dietary polyphenols and epi-gallocatechin gallate (EGCG), the main polyphenolic constituent of green tea, and 5-caffeoyl quinic acid, the main phenolic constituent of the green coffee bean. RESULTS: We studied the inhibition of DNA methyltransferase 3a by a series of dietary polyphenols from black tea such as theaflavins and thearubigins and chlorogenic acid derivatives from coffee. For theaflavin 3,3 digallate and thearubigins IC50 values in the lower micro molar range were observed, which when compared to pharmacokinetic data available, suggest an effect of physiological relevance. CONCLUSIONS: Since Dnnmt3a has been associated with development, cancer and brain function, these data suggest a biochemical mechanism for the beneficial health effect of black tea and coffee and a possible molecular mechanism for the improvement of brain performance and mental health by dietary polyphenols.


Subject(s)
Camellia sinensis/chemistry , Coffea/chemistry , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Animals , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Mice , Polyphenols
SELECTION OF CITATIONS
SEARCH DETAIL