Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neurochem Int ; 141: 104876, 2020 12.
Article in English | MEDLINE | ID: mdl-33049337

ABSTRACT

Women around menopause are vulnerable to present psychiatric and metabolic disorders; thus, therapies that contribute to treat both pathologies are required. Previous reports showed that an aqueous extract of pomegranate (Punica granatum), enriched in ellagitannins, exerts an antidepressant-like effect in ovariectomized rats. We analyze whether this aqueous extract of P. granatum (AE-PG) prevents the anxiety-like behavior induced by a cafeteria diet (CAF) in middle-aged ovariectomized rats at the same time that it prevents an increase in body weight, glucose, lipids, and the changes on mRNA expression of the peroxisome proliferator-activated receptor-gamma (PPAR-γ) in the liver. Also, the effects of AE-PG on the protein levels of PPAR-γphospho-PPAR-γ, extracellular signal-regulated protein kinase (ERK1/2) and phospho-ERK1/2 were measured in the hippocampus and amygdala. CAF induced anxiety-like behavior, augmented lipids and glucose blood levels, body weight, visceral fat, insulin resistance, and decreased mRNA expression of PPAR-γ in the liver. In rats fed with the CAF, AE-PG prevented the anxiety-like behavior, reduced body weight, lowered lipid levels, reduced insulin resistance, and increased PPAR-γ mRNA expression in the liver. In the hippocampus, ERK1/2 but not PPAR-γ protein levels were decreased by CAF, while AE-PG prevented these effects. In the amygdala, CAF increased the phosphorylation of PPARγ, and AE-PG prevented it. In contrast, AE-PG rescued the decreased ERK1/2 protein level in the hippocampus caused by CAF. In conclusion, AE-PG treatment prevented anxiogenic and metabolic effects induced by CAF, and its effects appear to be mediated by ERK1/2 and PPARγ depending on the brain area studied.


Subject(s)
Antidepressive Agents/pharmacology , Anxiety/psychology , Hydrolyzable Tannins/pharmacology , Menopause/metabolism , Menopause/psychology , Metabolism/drug effects , Plant Extracts/pharmacology , Pomegranate/chemistry , Adiposity/drug effects , Animals , Antidepressive Agents/chemistry , Anxiety/prevention & control , Blood Glucose/metabolism , Diet , Female , Hydrolyzable Tannins/chemistry , Lipid Metabolism/drug effects , MAP Kinase Signaling System/drug effects , Ovariectomy , PPAR gamma/metabolism , Plant Extracts/chemistry , Rats
2.
Neuroscience ; 322: 208-20, 2016 May 13.
Article in English | MEDLINE | ID: mdl-26917271

ABSTRACT

Epigallo-catechin-3-gallate (EGCG), found in the leaves of Camellia sinensis (green tea), has antioxidant- and scavenger-functions and acts neuroprotectively. It has been publicized as anti-aging remedy but data on potential cellular mechanisms are scarce. Recent studies claimed that EGCG specifically promotes neural precursor cell proliferation in the dentate gyrus of C57Bl/6 mice, without changes at the level of immature and mature new neurons. We here analyzed the effects of EGCG on adult hippocampal neurogenesis in male Balb/C mice and saw a different pattern. Two weeks of treatment with EGCG (0, 0.625, 1.25, 2.5, 5 and 10mg/kg) showed a dose-response curve that peaked at 2.5mg/kg of EGCG with significantly increased cell survival without affecting cell proliferation but decreasing apoptotic cells. Also, EGCG increased the population of doublecortin-(DCX)-expressing cells that comprises the late intermediate progenitor cells (type-2b and -3) as well as immature neurons. After EGCG treatment, the young DCX-positive neurons showed more elaborated dendritic trees. EGCG also significantly increased net neurogenesis in the adult hippocampus and increased the hippocampal levels of phospho-Akt. Ex vivo, EGCG exerted a direct effect on survival and neuronal differentiation of adult hippocampal precursor cells, which was absent, when PI3K, a protein upstream of Akt, was blocked. Our results thus support a pro-survival and a pro-neurogenic role of EGCG. In the context of the conflicting published results, however, potential genetic modifiers must be assumed. These might help to explain the overall variability of study results with EGCG. Our data do indicate, however, that natural compounds such as EGCG can in principle modulate brain plasticity.


Subject(s)
Catechin/analogs & derivatives , Cell Survival/drug effects , Hippocampus/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Catechin/chemistry , Catechin/pharmacology , Cell Survival/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Doublecortin Domain Proteins , Doublecortin Protein , Hippocampus/physiology , Male , Mice, Inbred BALB C , Microtubule-Associated Proteins/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/physiology , Neurogenesis/physiology , Neurons/physiology , Neuropeptides/metabolism , Neuroprotective Agents/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL